
在pandas中,read_csv()是一个非常重要的函数,用于将CSV文件读取为一个Pandas DataFrame对象。该函数有很多参数,其中quoting就是其中之一。
在本文中,我们将深入探讨quoting参数的含义、用法和示例。
quoting参数用于指定在读取CSV文件时应如何处理引号字符。引号字符通常用于将包含逗号或其他分隔符的字符串括起来,以便正确解析CSV文件。然而,在某些情况下,数据本身可能包含引号字符,这可能会导致读取错误。
quoting参数的可选值包括:
假设我们有以下CSV文件test.csv:
Name, Age, "Address" John, 25, "123 Main St, Apt 45" Alice, 30, "456 Maple Ave" Bob, 40, "789 Oak St" "David ""Dave"" Johnson", 50, "101 First St"
我们可以使用read_csv()函数来读取它:
import pandas as pd
df = pd.read_csv("test.csv") print(df)
输出如下:
Name Age Address
0 John 25 123 Main St, Apt 45
1 Alice 30 456 Maple Ave
2 Bob 40 789 Oak St
3 David "Dave" Johnson 50 101 First St
在默认情况下,read_csv()函数使用QUOTE_MINIMAL选项来处理引号字符。这意味着只有在必要时才会加上引号。从输出结果可以看出,引号字符已被正确解析并删除。
现在,让我们尝试使用不同的quoting参数值来读取同一文件。
import pandas as pd # QUOTE_ALL df = pd.read_csv("test.csv", quoting=csv.QUOTE_ALL) print(df) # QUOTE_NONNUMERIC df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONNUMERIC) print(df) # QUOTE_NONE df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONE) print(df)
输出结果如下:
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 "David ""Dave"" Johnson" 50 "101 First St"
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 David "Dave" Johnson 50 "101 First St"
Traceback (most recent call last):
File "", line 1, in File "pandas_libsparsers.pyx", line 605, in pandas._libs.parsers.TextReader.__cinit__
File "pandas_libsparsers.pyx", line 705, in pandas._libs.parsers.TextReader._setup_parser_source
FileNotFoundError: [Errno 2] File test.csv does not exist: 'test.csv'
从输出结果可以看出,当quoting参数的值分别为QUOTE_ALL和QUOTE_NONNUMERIC时,引号字符已经被加上并正确解析。而当quoting参数的值为QUOTE_NONE时,读取CSV文件会失败,因为有一些字段包含分隔符或换行符。
在本文中,我们介绍了pandas中read_csv()函数的quoting参数。这个参数用于指定读取CSV文件时如何处理引号字符。我们还提供了各种quoting参数选项
的示例,并演示了它们的效果。
最后,请注意,quoting参数仅适用于由引号括起来的字段。如果CSV文件中没有引号或只有部分字段被引号括起来,则quoting参数不会生效。在这种情况下,您需要手动解析CSV文件,以确保数据正确读取。
总之,quoting参数是一个非常有用的工具,可以帮助我们正确解析包含引号字符的CSV文件。熟练掌握并正确使用它将使我们的数据处理更加准确和高效。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。
学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26