
PyTorch是一种流行的深度学习框架,它提供了许多方便的工具来处理数据集并构建模型。在深度学习中,我们通常需要对训练数据进行交叉验证,以评估模型的性能和确定超参数的最佳值。本文将介绍如何使用PyTorch实现10折交叉验证。
首先,我们需要加载数据集。假设我们有一个包含1000个样本的训练集,每个样本有10个特征和一个标签。我们可以使用PyTorch的Dataset和DataLoader类来加载和处理数据集。下面是一个示例代码片段:
import torch
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = torch.tensor(self.data[idx][:10], dtype=torch.float32)
y = torch.tensor(self.data[idx][10], dtype=torch.long)
return x, y
data = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0],
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1],
...
[1000, 999, 998, 997, 996, 995, 994, 993, 992, 991, 9]]
dataset = MyDataset(data)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
在这里,我们定义了一个名为MyDataset的自定义数据集类,它从数据列表中返回一个样本。每个样本分别由10个特征和1个标签组成。然后,我们使用Dataset和DataLoader类将数据集加载到内存中,并将其分成大小为32的批次。我们也可以选择在每个时期迭代时随机打乱数据集(shuffle=True)。
接下来,我们需要将训练集划分为10个不同的子集。我们可以使用Scikit-learn的StratifiedKFold类来将数据集划分为k个连续的折叠,并确保每个折叠中的类别比例与整个数据集相同。下面是一个示例代码片段:
from sklearn.model_selection import StratifiedKFold
kfold = StratifiedKFold(n_splits=10)
X = torch.stack([x for x, y in dataset])
y = torch.tensor([y for x, y in dataset])
for fold, (train_index, val_index) in enumerate(kfold.split(X, y)):
train_dataset = torch.utils.data.Subset(dataset, train_index)
val_dataset = torch.utils.data.Subset(dataset, val_index)
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# Train and evaluate model on this fold
# ...
在这里,我们使用StratifiedKFold类将数据集划分为10个连续的折叠。然后,我们使用Subset类从原始数据集中选择训练集和验证集。最后,我们使用DataLoader类将每个子集分成批次,并分别对其进行训练和评估。
在每个折叠上训练和评估模型时,我们需要编写适当的代码。以下是一个简单的示例模型和训练代码:
import torch.nn as nn
import torch.optim as optim
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(10, 64)
self.fc2 = nn.Linear(64, 2)
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x
) x = self.fc2(x) return x
model = MyModel() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10): for i, (inputs, labels) in enumerate(train_dataloader): optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# Evaluate on validation set
with torch.no_grad():
total_correct = 0
total_samples = 0
for inputs, labels in val_dataloader:
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total_correct += (predicted == labels).sum().item()
total_samples += labels.size(0)
accuracy = total_correct / total_samples
print(f"Fold {fold + 1}, Epoch {epoch + 1}: Validation accuracy={accuracy}")
在这里,我们定义了一个名为MyModel的简单模型,并使用Adam优化器和交叉熵损失函数进行训练。对于每个时期和每个批次,我们计算输出、损失和梯度,并更新模型参数。然后,我们使用no_grad()上下文管理器在验证集上进行评估,并计算准确性。
4. 汇总结果
最后,我们需要将10个折叠的结果合并以获得最终结果。可以使用numpy来跟踪每个折叠的测试损失和准确性,并计算平均值和标准差。以下是一个示例代码片段:
```python
import numpy as np
test_losses = []
test_accuracies = []
for fold, (train_index, test_index) in enumerate(kfold.split(X, y)):
test_dataset = torch.utils.data.Subset(dataset, test_index)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# Evaluate on test set
with torch.no_grad():
total_correct = 0
total_loss = 0
total_samples = 0
for inputs, labels in test_dataloader:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, predicted = torch.max(outputs, 1)
total_correct += (predicted == labels).sum().item()
total_loss += loss.item() * labels.size(0)
total_samples += labels.size(0)
loss = total_loss / total_samples
accuracy = total_correct / total_samples
test_losses.append(loss)
test_accuracies.append(accuracy)
mean_test_loss = np.mean(test_losses)
std_test_loss = np.std(test_losses)
mean_test_accuracy = np.mean(test_accuracies)
std_test_accuracy = np.std(test_accuracies)
print(f"Final results: Test loss={mean_test_loss} ± {std_test_loss}, Test accuracy={mean_test_accuracy} ± {std_test_accuracy}")
在这里,我们使用Subset类创建测试集,并在每个折叠上评估模型。然后,我们使用numpy计算测试损失和准确性的平均值和标准差,并将它们打印出来。
总之,使用PyTorch实现10折交叉验证相对简单,只需使用Dataset、DataLoader、StratifiedKFold和Subset类即可。重点是编写适当的模型和训练代码,并汇总所有10个折叠的结果。这种方法可以帮助我们更好地评估模型的性能并确定超参数的最佳值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29