
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天在Python最强王者交流群【༺ཉི།།与歌同行ཉྀ༻】问了一个Python字典的处理问题,提问截图如下:
下面是他的元素数据。
a = [
{'time': '8:30-9:30', 'content': '开场致词', 'speaker': [{'name': '李明', 'hs': '重庆附属永川'}]},
{'time': '8:30-9:30', 'content': '开场致词', 'speaker': [{'name': '主席:李伟', 'hs': '苏州附属院'}]},
{'time': '8:30-9:30', 'content': '开场致词', 'speaker': [{'name': '王斌', 'hs': '佛山市院'}]}
]
想要达到预期的效果如下图所示:
这里【甯同学】提供了一个代码,如下所示:
后来我自己也给了一个代码,代码如下:
a = [
{'time': '8:30-9:30', 'content': '开场致词', 'speaker': [{'name': '李明', 'hs': '重庆附属永川'}]},
{'time': '8:30-9:30', 'content': '开场致词', 'speaker': [{'name': '主席:李伟', 'hs': '苏州附属院'}]},
{'time': '8:30-9:30', 'content': '开场致词', 'speaker': [{'name': '王斌', 'hs': '佛山市院'}]}
]
new_dict = {}
new_lst = [] for item in a:
new_dict.setdefault('speaker', []).append(item['speaker']) # print(new_dict) front_dict = {'time': '8:30-9:30', 'content': '开场致词'} # new_lst.append(a[0][0]) final_dict = {**front_dict, **new_dict} print(final_dict)
有些冗余,但是也是可以得到预期的效果的。
后来【甯同学】还使用Pandas秀了一把,如下所示:
后来【隔壁山楂】针对上面的两个代码,都做了一次优化,代码分别如下:
# 这个写成这样 from itertools import groupby from operator import itemgetter
[dict(zip(('time', 'content', 'speaker'),
(*key, sum([i['speaker'] for i in value], [])))) for key, value in groupby(a, itemgetter('time', 'content'))]
针对Pandas的写法,代码如下:
# 这个写成这样 import pandas as pd pd.DataFrame(a).groupby(['time', 'content']).speaker.sum().reset_index().to_dict(orient='records')
简直太秀了!
大家好,我是皮皮。这篇文章主要盘点了一个Python字典处理的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28