
作者:俊欣
来源:关于数据分析与可视化
就在前段时间,一项由卫健委发起的脱发人群调查数据显示:中国受脱发问题困扰的人群高达2.5亿。听到这儿,远在韩国的各家媒体又开始出来搞事情了,
根据他们的计算,这些人完全脱发时的总脱发面积大约可达5900平方公里,相当于首尔市面积(605平方公里)的十倍,那么今天小编就以一个数据分析师的身份来为这些人群出出主意,挑几款相对合适的防脱发洗发水给他们来使用
1. 聊聊脱发困扰
脱发其实分为很多种情况,如脂溢性脱发,表现为头屑增多、头皮痛痒、头发油脂分泌旺盛。还有营养性脱发,当饮食作息不规律时,脱发情况就会愈发地严重,以及物理性脱发,有时头发扎太紧、扯伤毛囊,都会造成脱发。
不过大家也不用太过于担心,有研究表明,一个正常人每天脱落80-100根头发属于正常情况,但是如果超过100根就要提高警惕了,极大可能是头发的生长跟不上脱发的速度了。而有一款合适的洗发水,保持头皮的清洁卫生,对于防脱生发也有着极大的帮助,而对于不同头皮发质、不同年龄段的人来说,使用的洗发水也是不尽相同的。
2. 数据采集
数据采集是数据可视化分析的第一步,也是最基础的一步,本文主要是基于从电商平台上抓取一些防脱发类型的洗发水,采集过程如下
2.1 页面分析与程序的编写
该页面的总共60件商品由两个子页面构成的,每一个子页面分别包含30件商品,通过page参数来进行调节,那么我们请求的构造方式就变得相当简单了,
def get_xxx_html(page): params = ( ('keyword', 'u9632u8131u53D1u6D17u53D1u6C34'), ('qrst', '1'), ('suggest', '1.def.0.base'), ('wq', 'u9632u8131u53D1u6D17u53D1u6C34'), ('stock', '1'), ('pvid', '4d8b661510984fb5ae2bf68fac6c50c7'), ('page', str(page)), ('s', '27'), ('scrolling', 'y'), ('log_id', '1633307411833.8939'), ('tpl', '1_M'), ('isList', '0'), ) response = requests.get('https://search.xxxx.com/s_new.php', headers=headers, params=params, proxies=proxies) response_beau = BeautifulSoup(response.text, 'lxml') return response_beau
通过这个请求,可以获取到的商品信息如下
而针对评论方面的内容,则是以json数据形式存在,比较好解析,而且接口api非常明确,可以直接通过商品id这个参数即可进行请求的获取
params = ( ('callback', 'fetchJSON_comment98'), ('productId', str(productId)), ('score', '0'), ('sortType', '5'), ('page', '0'), ('pageSize', '10'), ('isShadowSku', '0'), ('fold', '1'), ) response = requests.get('https://club.xxxxx.com/comment/productPageComments.action', headers=headers, params=params, cookies=cookies) response_jsonified = response.text.replace("fetchJSON_comment98", "")[1:-2] response_jsonified_again = json.loads(response_jsonified) productCommentSummary = response_jsonified_again.get("productCommentSummary") commentSum = productCommentSummary.get("commentCountStr") goodRate = productCommentSummary.get("goodRate")
3.数据清洗
数据采集后,接下来便对其进行数据清洗,去除重复值与脏数据,有助于提高可视化分析的准确性。
导入商品数据
import pandas as pd df = pd.read_excel("jd_product_info.xlsx") df.info()
删除重复数据
df.drop_duplicates()
特殊字符处理
df["product_name"] = df["product_name"].str.replace(r's','',regex=True) df["commentSum"] = df["commentSum"].str.replace('+','',regex=True).str.replace('万','0000',regex=True) df.describe()
4. 可视化分析
以下我们将从商品的价格分布、评论分布、商品产地分布、旗舰店所卖商品分布,商品功效等维度来进行数据的可视化分析
商品价格分布
df["product_price"].plot.hist(stacked = True, bins=20)
可以看到大部分的商品价格都在250元以内,然后我们对商品的价格区间做一个统计分析
df["product_price_range"] = df["product_price"].apply(lambda x: range_price(x)) df["product_price_range"].value_counts()
评论数分布
大部分的商品评论数都是在5000+或者是2000+左右,或者是在200以及500左右的评论量,而评论数在50万以上以及100万以上的分别有22个和17个,我们可以基本认定这些类的商品,它的购买量是最多的,我们
df["commentSum"].value_counts().head(8)
而评论量在100万以上的基本上都是霸王旗舰店或者是爱茉莉官方旗舰店所售卖的商品
df[df["commentSum"] == "1000000"]["product_shop_name"].value_counts()
哪些旗舰店的商品最多
那么从总体上来看,哪家店铺卖的防脱发的洗发水更多呢,其中“霸王旗舰店”总体上来看也是售卖防脱发类型的产品最多的,其次便是“华贸美妆专营店”和“滋源官方旗舰店”等
df["product_shop_name"].value_counts().head(20)
不同头皮与不同发质对应的洗发水
不同头皮、不同发质所对应使用的洗发水不同,例如对于油性头皮,想要“去屑、控油、防脱”功效的洗发水,可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:油性"] df_1["commentSum"] = df_1["commentSum"].astype("int") df_1[df_1["product_function"].str.contains("去屑")].sort_values("commentSum", ascending = False)
例如对于中性头皮,想要达到控油效果的洗发水,则可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:中性"] df_1["commentSum"] = df_1["commentSum"].astype("int") df_1[df_1["product_function"].str.contains("控油")].sort_values("commentSum", ascending = False)
小结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27