
作者:俊欣
来源:关于数据分析与可视化
就在前段时间,一项由卫健委发起的脱发人群调查数据显示:中国受脱发问题困扰的人群高达2.5亿。听到这儿,远在韩国的各家媒体又开始出来搞事情了,
根据他们的计算,这些人完全脱发时的总脱发面积大约可达5900平方公里,相当于首尔市面积(605平方公里)的十倍,那么今天小编就以一个数据分析师的身份来为这些人群出出主意,挑几款相对合适的防脱发洗发水给他们来使用
1. 聊聊脱发困扰
脱发其实分为很多种情况,如脂溢性脱发,表现为头屑增多、头皮痛痒、头发油脂分泌旺盛。还有营养性脱发,当饮食作息不规律时,脱发情况就会愈发地严重,以及物理性脱发,有时头发扎太紧、扯伤毛囊,都会造成脱发。
不过大家也不用太过于担心,有研究表明,一个正常人每天脱落80-100根头发属于正常情况,但是如果超过100根就要提高警惕了,极大可能是头发的生长跟不上脱发的速度了。而有一款合适的洗发水,保持头皮的清洁卫生,对于防脱生发也有着极大的帮助,而对于不同头皮发质、不同年龄段的人来说,使用的洗发水也是不尽相同的。
2. 数据采集
数据采集是数据可视化分析的第一步,也是最基础的一步,本文主要是基于从电商平台上抓取一些防脱发类型的洗发水,采集过程如下
2.1 页面分析与程序的编写
该页面的总共60件商品由两个子页面构成的,每一个子页面分别包含30件商品,通过page参数来进行调节,那么我们请求的构造方式就变得相当简单了,
def get_xxx_html(page): params = ( ('keyword', 'u9632u8131u53D1u6D17u53D1u6C34'), ('qrst', '1'), ('suggest', '1.def.0.base'), ('wq', 'u9632u8131u53D1u6D17u53D1u6C34'), ('stock', '1'), ('pvid', '4d8b661510984fb5ae2bf68fac6c50c7'), ('page', str(page)), ('s', '27'), ('scrolling', 'y'), ('log_id', '1633307411833.8939'), ('tpl', '1_M'), ('isList', '0'), ) response = requests.get('https://search.xxxx.com/s_new.php', headers=headers, params=params, proxies=proxies) response_beau = BeautifulSoup(response.text, 'lxml') return response_beau
通过这个请求,可以获取到的商品信息如下
而针对评论方面的内容,则是以json数据形式存在,比较好解析,而且接口api非常明确,可以直接通过商品id这个参数即可进行请求的获取
params = ( ('callback', 'fetchJSON_comment98'), ('productId', str(productId)), ('score', '0'), ('sortType', '5'), ('page', '0'), ('pageSize', '10'), ('isShadowSku', '0'), ('fold', '1'), ) response = requests.get('https://club.xxxxx.com/comment/productPageComments.action', headers=headers, params=params, cookies=cookies) response_jsonified = response.text.replace("fetchJSON_comment98", "")[1:-2] response_jsonified_again = json.loads(response_jsonified) productCommentSummary = response_jsonified_again.get("productCommentSummary") commentSum = productCommentSummary.get("commentCountStr") goodRate = productCommentSummary.get("goodRate")
3.数据清洗
数据采集后,接下来便对其进行数据清洗,去除重复值与脏数据,有助于提高可视化分析的准确性。
导入商品数据
import pandas as pd df = pd.read_excel("jd_product_info.xlsx") df.info()
删除重复数据
df.drop_duplicates()
特殊字符处理
df["product_name"] = df["product_name"].str.replace(r's','',regex=True) df["commentSum"] = df["commentSum"].str.replace('+','',regex=True).str.replace('万','0000',regex=True) df.describe()
4. 可视化分析
以下我们将从商品的价格分布、评论分布、商品产地分布、旗舰店所卖商品分布,商品功效等维度来进行数据的可视化分析
商品价格分布
df["product_price"].plot.hist(stacked = True, bins=20)
可以看到大部分的商品价格都在250元以内,然后我们对商品的价格区间做一个统计分析
df["product_price_range"] = df["product_price"].apply(lambda x: range_price(x)) df["product_price_range"].value_counts()
评论数分布
大部分的商品评论数都是在5000+或者是2000+左右,或者是在200以及500左右的评论量,而评论数在50万以上以及100万以上的分别有22个和17个,我们可以基本认定这些类的商品,它的购买量是最多的,我们
df["commentSum"].value_counts().head(8)
而评论量在100万以上的基本上都是霸王旗舰店或者是爱茉莉官方旗舰店所售卖的商品
df[df["commentSum"] == "1000000"]["product_shop_name"].value_counts()
哪些旗舰店的商品最多
那么从总体上来看,哪家店铺卖的防脱发的洗发水更多呢,其中“霸王旗舰店”总体上来看也是售卖防脱发类型的产品最多的,其次便是“华贸美妆专营店”和“滋源官方旗舰店”等
df["product_shop_name"].value_counts().head(20)
不同头皮与不同发质对应的洗发水
不同头皮、不同发质所对应使用的洗发水不同,例如对于油性头皮,想要“去屑、控油、防脱”功效的洗发水,可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:油性"] df_1["commentSum"] = df_1["commentSum"].astype("int") df_1[df_1["product_function"].str.contains("去屑")].sort_values("commentSum", ascending = False)
例如对于中性头皮,想要达到控油效果的洗发水,则可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:中性"] df_1["commentSum"] = df_1["commentSum"].astype("int") df_1[df_1["product_function"].str.contains("控油")].sort_values("commentSum", ascending = False)
小结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28