京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小K
来源:麦叔编程
❝
上期的Python三分钟留言区,有很多小伙伴想了解Python的GIL是个啥玩意。
但是想了解GIL到底是个啥,我们需要学习一些前置的知识。
这样才能更好得了解GIL。
❞
线程安全, 是指变量或方法(这些变量或方法是多线程共享的) 可以在多线程的环境下被安全有效的访问。
太抽象了?我举个例子:
假如今天中午12:00,在某平台有1元抢茅台活动,参加活动的茅台就一瓶。
但是中午集结了好几万用户在线等开抢信号,时间到了12:00:00,这些用户疯狂点击屏幕抢购。
此时某平台肯定要保证只有一个人能获得活动茅台,要不然平台还不赔死。「这就是线程安全的概念。」
import threadingzero = 0def change_zero(): global zero for i in range(3000000): zero += 1 zero -= 1th1 = threading.Thread(target = change_zero)th2 = threading.Thread(target = change_zero)th1.start()th2.start()th1.join()th2.join()print(zero)
我定义了一个函数change_zero对全局变量zero+1、-1操作。
还定义了两个线程th1和th2去执行它3000000*2次。
每次+1、-1都会被执行的话,输出的zero肯定还是0,
但是代码执行之后...
好像根本不会还等于0。
所以我们推测,运行当中肯定有几次+1,-1的操作没有有效地被执行。(线程非安全)。
但是这样的代码投入生产肯定是有bug的,如果将这代码用在一些金额结算上,那写代码的人肯定是头铁了。
❝
那有什么办法能拯救线程非安全的操作呢?
❞
有个很常用的方法,那就是「加锁」。
import threadinglock = threading.Lock() # 创建线程锁zero = 0def change_zero(): global zero for i in range(3000000): with lock: # 把线程非安全操作加锁 zero += 1 zero -= 1th1 = threading.Thread(target = change_zero)th2 = threading.Thread(target = change_zero)th1.start()th2.start()th1.join()th2.join()print(zero)
从上方代码中,我们把zero += 1和zero -= 1这两步操作进行加锁。
❝
类似于接力跑,只有从前一棒队友手中接过接力棒,才能往下一棒队友那边跑,没有完成接力棒交接则不能跑。
❞
❝
上下文管理器with lock在操作进行时会执行lock.acquire()拿到锁,执行完毕后会将锁释放给下一个操作lock.release()。
❞
运行上方加了锁之后的代码:
得到的结果都是0,没再出现计算混乱的情况,这就从线程非安全转变成线程安全操作了。
看到这,你是否有疑问了?
Python不是有GIL护体吗?怎么还会出现这种线程非安全的情况?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22