
CDA数据分析师 出品
编译:Mika
【导读】
作为一名数据分析师,你应该走什么样的职业路径?当你成为一名数据分析师之后你会做什么?在本文中数据分析师Alex Freberg就给我们聊了聊这些问题,看看我们应该怎么做!
大家好,今天我们将讨论一下数据分析的职业发展路径。
具体来说,我们会聊一聊:
我们先聊聊第一点,如何成为数据分析师。
首先,在成为数据分析师之前,我们踏上这条职业路径,一开始要做的就是学习相关技能。
想成为数据分析师,我认为三个最必要的技能是:
最开始用处很大,但学习来有些难度的就有:
但是这些技能熟能生巧。随着你在职业路径中越走越远,这些技能你会不断累积和提升。
为了成为数据分析师,你一开始就需要学习这些技能。
接下来你要做的就是制作个人简历。
你的简历就是,向雇主介绍你是谁的快照。因此做好简历是至关重要的,要确保把自己塑造成他人想雇佣的人才。
因此在制作建立时有几点关键要注意:
首先,强调自己最擅长的技能。
如果SQL是你的强项,那么在简历中至少要提到三次SQL。比如放在总结部分、技能部分、工作经历,或者至少在作品集中。
接着在简历中,去掉无关的工作经历或技能。
假设过去五年你一直是厨师。现在由于某些原因,你想转行成数据分析师。那么就不用列举出当厨师时,你所学的技能。
现在你要主要列举决定转行数据分析师后,你所学习的相关技能。
这里要注意的是,如果在之前的工作,你掌握了大量领域专业知识。
比如你有五年护士工作经验,护士并没有大量数据分析经验,但如果你打算在一家医疗分析公司工作,你的护士工作背景就十分有用了。
最后,简历要有条理性和专业性。
我看过很多简历,我常常发现:许多求职者的简历没有与时俱进,还停留在之前的状态。
因此,及时更新的简历将大有帮助。
还有一点就是,很多人的简历上附有大头照或者很鲜艳的颜色。我一般给出的建议是让简历更简洁,颜色更低调比如选择别太亮的颜色。
下面一步,你需要建立作品集。
目的是为了向雇主展示你能做什么,你掌握的技能,你做的步骤,如果聘用你,他们会得到什么。
通常我会建议准备2到5个项目。
很多人问我怎么开发项目,怎么建作品集,以下是要建立作品集的步骤:
首先,获取数据集或收集数据。
从网页爬取数据,或者在Kaggle或Google获取数据集。
接下来对数据进行清洗和转换,从而之后能使用。
你可以通过Python里的pandas,或者SQL完成这个步骤。
清洗数据后,这里建议把数据放在SQL。从而可以生成视图,还能展现SQL的能力。
然后将数据可视化工具连接视图,生成可视化。当中可以做出很多变化,收集数据、转换数据的方式、可视化的方式等。
以上这就是建立作品集的基本步骤。
最后要做的就是,如何向雇主展示你的作品集。
你可以发布在Github,或者建立个人网站。我建议在简历中放上对应链接。
接下来我要建议的就是跟猎头合作。
之前我为了找工作与猎头建立联系,如今我与猎头联系是为了招人,因此我知道在招聘过程中他们的重要性。
如果你之前没想过这一点,这里有几点简单的方法可以试试。
首先你可以用LinkedIn。从LinkedIn试试是不错的选择,很多猎头在招聘时会看看LinkedIn,然后联系人进行面试。
因此在LinkedIn资料时,你可以写:那你想找数据分析师或者初级数据分析师的工作。让猎头带着工作机会来主动来找你。
如果你不想被动的等待,也可以主动电话或邮件联系猎头。
我建议打电话联系,跟猎头聊聊,让他们知道你的情况,你想找什么样的工作。之后当你发送简历给他们时,他们至少会将你跟简历联系起来,或者帮你更快的找到工作。
最后你需要跟猎头合作,获得面试机会。我认为跟猎头合作能获得更多面试机会,这远胜于自己投简历。
通常这些猎头有内部消息,或者跟公司直接有合作。因此他们十分了解他们要找的职位,而且会知道你是否能胜任。
下面要讲的是,获得面试机会,最终得到工作。
为此我强烈建议你准备好技术类问题。
至少据我所知,对于初级数据分析师,技术性问题主要是关于SQL。随着你更有经验,也会涉及到Python的问题。
你还需要准备任何面试都会问到的常规问题,大家常常搞砸的问题之一就是:
我最大的弱点是什么。
这个问题把很多人都难倒了,但是每个面试都会问到。我的建议是事先写下来,当你被问到时不会措手不及。
最后注意着装,保持自信。
关于自信,说起来容易做起来难,很多时候大家都会紧张。但我向你保证,自信是大有帮助的,在半个多小时的面试中,起码要试着假装自信满满。
好的,最终你得到这份工作了。
你成为了数据分析师,并工作了好几年,那接下来要做什么呢?
该做些什么提升职业路径呢?
有很多不同的发展方向,但每个人应该做的就是:提升技术。
我强烈建议你去学习Python或R。
或者学学ETL,即抽取、转化、加载,用于从来源获取数据,加载到数据仓库或数据库,比如SSIS、Azure、Data Factory、AWS Glue这类热门的ETL工具。
你还可以学习数据建模,预测模型/分析,还可以学习数据仓库建模。
或者进阶到数据科学技能,比如机器学习以及NLP。这些都是数据科学家常用的。
当你作为数据分析工作了一段时间,有好几种发展路径可以选择。
其中一条是回到学校进修。如果你想攻读硕士学位,这会是非常不错的选择。硕士学位对于你职业的长期发展是很有帮助的,有很多专业都跟数据分析相关。
首先是计算机科学,我认为这是最受欢迎的专业,而且最有用处的。
其他还有信息系统,统计专业,现在甚至还有数据分析或数据科学专业。你可以从中学到,成为数据分析师或数据科学家的专业知识。
回到学校进修是很好的选择,你还可以边工作边学习,很多人进行在线学习,还有很多在线学习硕士课程,如今边工作边攻读硕士学位也越来越得到认可。有些公司还支持员工进修,甚至帮员工支付学费。
另一条发展路径就是,升职,继续当数据分析师。
中级数据分析师、高级数据分析
从初级数据分析师职位起步,然后不断晋升,成为中级数据分析师,高级数据分析。你仍然是数据分析师,但你比新人更经验老道。
首席数据分析师
管理者的不同之处在于,管理者通常以最有效的方式组织大家工作。首席数据分析师还是要做数据分析工作,但他们下面有要指导和帮助的数据分析师。当遇到问题和技术问题时,首席数据分析能帮助其他人解决问题。
数据分析经理
正如我们前面提到的,还有数据分析经理。通常这个人不会做繁重的工作,他们更多的是在管理层。他们会决定哪些项目最重要,他们对公司的发展有很大的影响力。
数据分析总监
如果你继续晋升,还可能成为数据分析总监,这是很多人的目标。如果你作为数据分析继续做下去,你可能会晋升到这个位置。
最后一条路径是职业转型。
数据分析师需要用到很多工具和软件,这点与你感兴趣的许多不同工作是重叠的。
假设你很喜欢ETL相关的,你可以转型成数据工程师。
作为数据分析师,你也可以转型到这些岗位:
关于如何从数据分析师转型到这些岗位,今后我之后会进一步进行介绍。
虽然你喜欢当数据分析师,当今后的职业发展中对你而言可能有更好的工作。
回学校进修跟这些职业转型也会有所重叠,当你在进修时,你可以职业转型 或者利用学位进行职业转型,你还可以利用学位继续晋升,一直做到总监的位置。
以上就是今天的内容了,希望能对你有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28