京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小K
来源:麦叔编程
简答读者问
要查看一个类型的父类,可以使用__bases__属性查看,
要查看一个实例的类型可以用__class__来查看
type是object的子类,type是type的实例。
object没有父类,object是type的实例。
这个“伦理”关系乱不乱??
type和object,分管不同的任务,但type和object又是各自的顶端。
type掌管一切类型,所以object也是type类型,type也是type类型。
而object是一切类的父类,所以type的父类又是object。
看过上期的小伙伴应该都记住了用type创造一个类的方式,
❝
type(类名, 父类的元组(针对继承的情况,可以为空), 包含属性的字典(名称和值))
❞
今天再来学习一种用type创造类的方式,这种方式的代码更易读些。
先创造一个元类:
class Boing737MetaClass(type): def __new__(cls, name, bases, attrs): attrs["plane_model_"+name] = lambda self, name: f"BoingPlane737{name}" return type.__new__(cls, name, bases, attrs)
分析代码:
class Boing737MetaClass(type):
继承type,表示我要创造一个类型(元类)。
def __new__(cls, name, bases, attrs)
name, bases和attrs都是元类的老朋友了。
类名,继承父类,包含属性的字典(名称和值)。
attrs["plane_model_"+name] = lambda self, name: f"BoingPlane737{name}"
确定元类中的属性和函数(不明白可以复习上一篇元类的文章)。
return type.__new__(cls, name, bases, attrs)
返回之后,就按照传入的参数new一个新类。
实际操作下,
class Boing737MetaClass(type): def __new__(cls, name, bases, attrs): attrs["plane_model_"+name] = lambda self, name: f"BoingPlane737{name}" return type.__new__(cls, name, bases, attrs)# 定义一个类并指定元类class B100(object, metaclass = Boing737MetaClass): pass# 实例化定义的类plane = B100()# 调用类中来自元类的方法print(plane.plane_model_B100(100))
plane.plane_model_B100函数名是由类名动态订制而来。
❝
attrs["plane_model_"+name]
❞
运行上方代码之后得到结果:
BoingPlane737100
❝
今天的内容比较抽象,概念都比较虚,所以需要花时间去理解消化。
❞
今天继续感谢归零这位铁粉的持续关注,我来回答你提一个问题。
在Python中一切皆对象,方法(函数)当然也是对象,所以方法也可作为值存入字典。
如果你也有一些疑问,请在评论区留言,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16