京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:咕隆先森
来源:Python 技术
工作上经常需要与外国友人邮件沟通,奈何工作电脑没有安装有道词典一类的翻译软件,结合自己的需要,自己撸一个桌面翻译神器。
基本思路:基于PySimpleGUI开发桌面GUI→获取键盘输入→接入谷歌翻译API→爬虫获取翻译结果(其中涉及到正则表达式匹配翻译结果)→输出翻译结果→翻译完成。
创建图形用户界面 (GUI)可能很困难, 有许多不同的Python GUI工具包可供选择。最常提到的前三名是 Tkinter, wxPython 和 PyQt (或PySide2). 但是PySimpleGUI的较新工具包,其目的是使创建GUI更加容易。
PySimpleGUI 主要的作用是成为Tkinter, wxPython和PyQt之上的抽象层。您可以将其视为包装器, 拉近设计者与GUI 的距离. 虽然建立GUI 变的很简单, 相对的有很多细节被忽略掉, 也就是说你只能按PySimpleGUI 所提供的功能来使用.这个版本是架设在Tkinter 之上, 当然还有其他的版本, 像是PySimpleGUIQt, PySimpleGUIWx, PySimpleGUIWeb, …
所以说优点呢, 就是简单, 缺点也是简单, 以下大约说明一下使用方法, 其他的 GUI 很难在短短一篇文章就能说个大槪.
代码如下(示例):
import reimport htmlfrom urllib import parseimport requestsimport PySimpleGUI as sg
代码如下(示例):
url = 'http://translate.google.cn/m?q=%s&tl=%s&sl=%s'
该处使用的url网络请求的数据,这里用到了%字符串格式化方法。需要用到三个参数:text——需要翻译的内容, to_language——目标语言类型, text_language——当前语言类型。
代码如下(示例):
def translate(text, to_language="en", text_language="auto"): text = parse.quote(text) url1 = url % (text, to_language, text_language) response = requests.get(url1) data = response.text # print(data) expr = r'(?s)class="(?:t0|result-container)">(.*?)<' result = re.findall(expr, data) print(result) if (len(result) == 0): return "" return html.unescape(result[0])
print语句用于前期调试,调试成功之后可以注释掉,也可以忽略,不影响使用!
代码如下(示例):
sg.theme('bluepurple') # 设置主题font = ("fangsong",12) # 字体仿宋,大小12menu = [["Help",["About","Item","Author"]]] # 菜单栏设置value = ['汉语','英语','日语','法语','俄语','自动'] # 语言选择(前端显示),默认只有6种,可以自己添加var = ['zh','en','ja','fr','ru','auto'] # 语言选择(后端执行时)dic = dict(zip(value,var)) # 语言字典配置layout = [[sg.Menu(menu, tearoff=False)], [sg.Text(text='Input',size=(26,1)), sg.Text(text='将',size=(2,1),justification='center'), sg.Combo(values=value, key='from', size=(10,1)), sg.Text(text='翻译为',size=(5,1),justification='center'), sg.Combo(values=value, key='to', size=(10,1))], [sg.Multiline(key="-IN-",size=(60, 8),font=font)], [sg.Text(text='Output',size=(30,1))], [sg.Multiline(key="-OUT-",size=(60, 8),font=font)], [sg.Text(text='',size=(36,1)), sg.Button("翻译", size=(6,1)), sg.Button("清除", size=(6,1)), sg.Button("退出", size=(6,1))] ]window = sg.Window("自制桌面翻译器", layout, icon="CT.ico") # 设置窗口名称,窗口布局,以及图标
layout为GUI布局,采用列表的模式,根据行列进行排布。
代码如下(示例):
while True: event, values =window.read() if event in (None, "退出"): # 点击“X”或者“退出”按钮时才退出 break if event == "翻译": if values["to"]=='' or values["from"]=='': # 未选择语言类型时弹窗提示 sg.Popup("请选择语言类型后重试,谢谢!") else: tar = translate(values["-IN-"],dic[values["to"]],dic[values["from"]]) window["-OUT-"].Update(tar) if event =="清除": window["-IN-"].Update("") window["-OUT-"].Update("") if event == "About": sg.Popup("使用方法:", "'翻译'确认输入,并输出翻译结果", "'清除'清除已有输入,清空翻译的结果", "'退出'取消,并退出App", title='', font = font, auto_close = 1) if event == "Item": sg.Popup("翻译类型:", "'输入类型' 输入的语言类型", "'输出类型' 输出的语言类型", title = '', font = font, auto_close = 1) if event == "Author": sg.Popup("作者简介:", "姓名:XXXXXX", "Wechat:XXXXXX", "E-mail:XXXXXX@qq.com", title = '', font = font, auto_close = 1)window.close()
windows.read()可以理解为监听,分别有事件event,返回值values。
while循环,当事件为空或者为“退出”是=时,结束循环,并退出。
Popup为消息提示弹窗,可以作为警告,提示,再确认的交互界面。
到这里,整个项目就已经完成了,涉及到的一些基础技能,还需要一点功力,好了,今天的分享就到这里,后续会更新如何使用pyinstaller进行打包分发使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31