
作者:Python进阶者
来源:Python爬虫与数据挖掘
Hello,大家好,我是码农星期八。
本章来给大家介绍一个爬虫利器,嗯。。。,app协议还原利器更合适,当然,自己用的话是利器,别人用是折磨
因为它需要依赖模拟器或手机。对于环境来说是有些麻烦的!
这个东西我们一般称它为frida rpc算法转发
我们都知道现在开发app主流的方案是Java,一些中大厂app是Java+C++,C++最后生成的是so,是arm汇编。
一般分析arm汇编才是最难的,所以中大厂会更倾向把重要加密放在so中,来增强爬虫或者破解的难度!!!
但是如果使用rpc的话,你就不太需要分析繁琐的Java层和so层的加密了!
你需要通过frida主动调用Java层或so层的方法,然后拿到被加密的内容,然后其他的操作不是就可以为所欲为了?
pixel2 v10(已root) Magisk v23.0 Charles v4.6.2 Drony v1.3.154 Python v3.8.6 frida v14.2.18
本次使用的app是嘟嘟牛,百年只刚嘟嘟牛,哈哈哈
通过抓包发现,走的接口是
http://api.dodovip.com/api/user/login
提交的是一个Encrypt:xxxx,返回的是一串字符串,这???啥玩意???
所以我们要模拟这个请求,必定要捋清这个请求和响应是怎么生成的!
app拖入jadx中
搜索关键字Encrypt
主要加密逻辑在这一块,
分析不是这一章的重点,相关hook代码,稍微研究一下就懂了!
Java.perform(function () { function printMap2(map) { return Java.cast(map, Java.use("java.util.HashMap"));
} // Java.use("com.dodonew.online.http.RequestUtil").encodeDesMap.overload('java.lang.String', 'java.lang.String', 'java.lang.String').implementation = function (data, desKey, desIV) { console.log("RequestUtil encodeDesMap is call") console.log("data:", data) console.log("desKey:", desKey)//65102933 console.log("desIV:", desIV)//32028092 let result = this.encodeDesMap(data, desKey, desIV) console.log("RequestUtil encodeDesMap result:", result) return result
}
Java.use("com.dodonew.online.http.RequestUtil").paraMap.overload('java.util.Map', 'java.lang.String', 'java.lang.String').implementation = function (addMap, append, sign) { console.log("RequestUtil paraMap is call") console.log("addMap:", addMap) console.log("addMap:", printMap2(addMap)) console.log("append:", append) console.log("sign:", sign) let result = this.paraMap(addMap, append, sign) console.log("RequestUtil paraMap result:", result) return result
}
Java.use("com.dodonew.online.http.RequestUtil").decodeDesJson.implementation = function (json, desKey, desIV) { console.log("RequestUtil decodeDesJson is call") console.log("json:", json) console.log("desKey:", desKey) console.log("desIV:", desIV) let result = this.decodeDesJson(json, desKey, desIV) console.log("RequestUtil decodeDesJson result:", result) return result
}
})
根据上述hook,整理出来主动调用应该是这样调用的,一个加密,一个解密。
//请求加密 function callparaMap(username, userPwd, timeStamp) { let result = "";
Java.perform(function () { let map = Java.use("java.util.HashMap").$new();
map.put("timeStamp", timeStamp)
map.put("loginImei", "Androidnull")
map.put("equtype", "ANDROID")
map.put("userPwd", userPwd)
map.put("username", username) // let r1 = Java.use("com.dodonew.online.http.RequestUtil").paraMap(map, "sdlkjsdljf0j2fsjk", "sign") // console.log("r1:", r1) // result = Java.use("com.dodonew.online.http.RequestUtil").encodeDesMap(r1, "65102933", "32028092") // console.log("r2:", r2) }) return result;
} //响应加密 function calldecodedesjson(data) { let result = "";
Java.perform(function () {
result = Java.use("com.dodonew.online.http.RequestUtil").decodeDesJson(data, "65102933", "32028092") // console.log("decode:", decode) }) return result;
}
既然上述已经把逻辑捋清楚了,并且也已经写好的主动调用的js代码。
那么就来了,如何和python结合到一起,跑成一个web,这样爬虫只需要响应的参数拿到返回值即可。
代码
from fastapi import FastAPI
import uvicorn
import frida
jsCode = """
function callparamap(username, userPwd, timeStamp) {
let result = "";
Java.perform(function () {
let map = Java.use("java.util.HashMap").$new();
map.put("timeStamp", timeStamp)
map.put("loginImei", "Androidnull")
map.put("equtype", "ANDROID")
map.put("userPwd", userPwd)
map.put("username", username)
//
let r1 = Java.use("com.dodonew.online.http.RequestUtil").paraMap(map, "sdlkjsdljf0j2fsjk", "sign")
// console.log("r1:", r1)
//
result = Java.use("com.dodonew.online.http.RequestUtil").encodeDesMap(r1, "65102933", "32028092")
// console.log("r2:", r2)
})
return result;
}
function calldecodedesjson(data) {
let result = "";
Java.perform(function () {
result = Java.use("com.dodonew.online.http.RequestUtil").decodeDesJson(data, "65102933", "32028092")
// console.log("decode:", decode)
})
return result;
}
rpc.exports = {
encrypt: callparamap,
decode: calldecodedesjson,
};
""" # 准备工作 # process = frida.get_device_manager().add_remote_device('192.168.3.68:27042').attach("com.dodonew.online") process = frida.get_usb_device().attach('com.dodonew.online')
script = process.create_script(jsCode)
print('[*] Running 小肩膀')
script.load()
app = FastAPI() # http://127.0.0.1:8080/getencrypt?username=18903916120&password=1111×tamp=1647662720061 @app.get("/getencrypt")
async def getencrypt(username, password, timestamp):
result = script.exports.encrypt(username, password, timestamp) return {"data": result}
from pydantic import BaseModel class Item(BaseModel): data: str
@app.post("/getdecode")
async def getdecode(item: Item):
result = script.exports.decode(item.data) return {"data": result} if __name__ == '__main__':
uvicorn.run(app, port=8080)
运行
代码
import requests
import time
import json
dt = time.time() * 1000 # 请求加密 url = f"http://127.0.0.1:8080/getencrypt?username=18903916120&password=1111×tamp={dt}" r1 = requests.get(url)
print(r1.json()) # 登录 url = "http://api.dodovip.com/api/user/login" headers = { "Content-Type": "application/json;charset=utf-8" }
data = { "Encrypt": r1.json().get("data")
}
print(data)
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.text) # 拿到请求解密 data = { "data": r.text
}
url = "http://127.0.0.1:8080/getdecode" r = requests.post(url=url,headers=headers, data=json.dumps(data))
print(r.text)
运行
这个app还是很简单的,但是应该用到了俩加密,如果要是硬刚代码的话,还是需要研究研究的。
但是如果使用rpc这种转发方案的话,你就可以发现几行代码就完事了!
但是缺陷也是明显的,需要依赖电脑和手机,如果只是采集数据的话,应该还是挺合适的!
如果在操作过程中有任何问题,记得下面留言,我们看到会第一时间解决问题。
越努力,越幸运。
我是码农星期八,如果觉得还不错,记得动手点赞一下哈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28