
作者:俊欣
来源:关于数据分析与可视化
相信大家都用在Excel当中使用过数据透视表(一种可以对数据动态排布并且分类汇总的表格格式),也体验过它的强大功能,在Pandas模块当中被称作是pivot_table,今天小编就和大家来详细聊聊该函数的主要用途。
那我们第一步仍然是导入模块并且来读取数据,数据集是北美咖啡的销售数据,包括了咖啡的品种、销售的地区、销售的利润和成本、销量以及日期等等
import pandas as pd def load_data(): return pd.read_csv('coffee_sales.csv', parse_dates=['order_date'])
那小编这里将读取数据封装成了一个自定义的函数,读者也可以根据自己的习惯来进行数据的读取
df = load_data() df.head()
output
通过调用info()函数先来对数据集有一个大致的了解
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4248 entries, 0 to 4247 Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 order_date 4248 non-null datetime64[ns] 1 market 4248 non-null object 2 region 4248 non-null object 3 product_category 4248 non-null object 4 product 4248 non-null object 5 cost 4248 non-null int64 6 inventory 4248 non-null int64 7 net_profit 4248 non-null int64 8 sales 4248 non-null int64
dtypes: datetime64[ns](1), int64(4), object(4)
memory usage: 298.8+ KB
在pivot_table函数当中最重要的四个参数分别是index、values、columns以及aggfunc,其中每个数据透视表都必须要有一个index,例如我们想看每个地区咖啡的销售数据,就将“region”设置为index
df.pivot_table(index='region')
output
当然我们还可以更加细致一点,查看每个地区中不同咖啡种类的销售数据,因此在索引中我们引用“region”以及“product_category”两个,代码如下
df.pivot_table(index=['region', 'product_category'])
output
上面的案例当中,我们以地区“region”为索引看到了各项销售指标,当中有成本、库存、净利润以及销量这个4个指标的数据,那要是我们想要单独拎出某一个指标来看的话,代码如下所示
df.pivot_table(index=['region'], values=['sales'])
output
这也就是我们上面提到的values,在上面的案例当中我们就单独拎出了“销量”这一指标,又或者我们想要看一下净利润,代码如下
df.pivot_table(index=['region'], values=['net_profit'])
output
另外我们也提到了aggfunc,可以设置我们对数据聚合时进行的函数操作,通常情况下,默认的都是求平均数,这里我们也可以指定例如去计算总数,
df.pivot_table(index=['region'], values=['sales'], aggfunc='sum')
output
或者我们也可以这么来写
df.pivot_table(index=['region'], values=['sales'], aggfunc={ 'sales': 'sum' })
当然我们要是觉得只有一个聚合函数可能还不够,我们可以多来添加几个
df.pivot_table(index=['region'], values=['sales'], aggfunc=['sum', 'count'])
output
剩下最后的一个关键参数columns类似于之前提到的index用来设置列层次的字段,当然它并不是一个必要的参数,例如
df.pivot_table(index=['region'], values=['sales'], aggfunc='sum', columns=['product_category'])
output
在“列”方向上表示每种咖啡在每个地区的销量总和,要是我们不调用columns参数,而是统一作为index索引的话,代码如下
df.pivot_table(index=['region', 'product_category'], values=['sales'], aggfunc='sum')
output
同时我们看到当中存在着一些缺失值,我们可以选择将这些缺失值替换掉
df.pivot_table(index=['region', 'product_category'], values=['sales'], aggfunc='sum')
output
我们再来做几组练习,我们除了想要知道销量之外还想知道各个品种的咖啡在每个地区的成本如何,我们在values当中添加“cost”的字段,代码如下
df.pivot_table(index=['region'], values=['sales', 'cost'], aggfunc='sum', columns=['product_category'], fill_value=0)
output
同时我们还能够计算出总量,通过调用margin这个参数
df.pivot_table(index=['region', 'product_category'], values=['sales', 'cost'], aggfunc='sum', fill_value=0, margins=True)
output
最后的最后,我们调用pivot_table函数来制作一个2010年度咖啡销售的销量年报,代码如下
month_gp = pd.Grouper(key='order_date',freq='M')
cond = df["order_date"].dt.year == 2010 df[cond].pivot_table(index=['region','product_category'],
columns=[month_gp], values=['sales'],
aggfunc=['sum'])
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25