京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
在Python当中用于绘制图表的模块,相信大家用的最多的便是matplotlib和seabron,除此之外还有一些用于动态交互的例如Plotly模块和Pyecharts模块,今天小编再为大家来推荐两个用于制作可视化大屏的库,分别叫做hvPlot以及Panel,在本篇教程当中,小编依次会为大家分享
我们首先导入一些要用到的模块以及用pandas来读取数据集,代码如下
# To handle data import numpy as np import pandas as pd # To make visualizations import hvplot.pandas import panel as pn; pn.extension() from panel.template import DarkTheme
用pandas绘制出来的图表默认都是以matplotlib模块为后端,因为不具备交互性,如下图所示
sales = pd.read_csv('games_sales.csv')
sales.plot(kind='line', x='Year', y='Units sold(in millions)', color='orange', grid=True, title='Pokémon Game Sales');
output
代码中的kind参数对应的是图表的类型,X参数代表的是X轴上面的所要要用到的数据,同理,我们还指定了标题、图表的颜色等等参数,那么要是我们希望pandas在绘制图表的时候是以hvPlot为后端,需要添加如下的代码
pd.options.plotting.backend = 'holoviews'
我们同样来绘制如上所示的图表,代码如下
sales.plot(kind='line', x='Year', y='Units sold(in millions)', color='orange', grid=True, title='Pokémon Game Sales')
output
通过最右侧的工具栏,我们可以将绘制出来的图表保存、放大/缩小、移动等一系列操作。我们也可以同时将若干种图表结合在一起,绘制在同一张图上面
salesplot = sales.plot(kind='line', x='Year', y='Units sold(in millions)',
color='orange', grid=True, title='Pokémon Game Sales',
hover=False) *
sales.plot(kind='scatter', x='Year', y='Units sold(in millions)',
color='#c70000', hover_cols='Game')
salesplot
output
我们分别绘制了两张图表,散点图以及折线图,通过*将两者有效地结合到了一块儿。
在上一期小编写过的教程
【干货原创】介绍一个Python模块,Seaborn绘制的图表也能实现动态交互
里面提到用ipywidgets模块来制作并且生成组件配合着可视化图表来使用,这次我们用Panel模块也来生成一个类似的组件,代码如下
pok_types = list(df.type_1.unique()) pok_type = pn.widgets.Select(name='Type', options=pok_types) pok_type
output
我们结合该组件来绘制图表,代码如下
viz0 = data_pipeline[['pokedex_number', 'name',
'total_points']].hvplot(kind='table',title='Pokémons',
width=400, height=400)
viz0
output
我们可以通过当中的参数kind来调整要绘制的图表的类型,width以及height参数来调整图表的大小,title参数来调整图表的标题,我们来绘制一张散点图,代码如下
viz1 = data_pipeline.hvplot(x='weight_kg', y='height_m', by='type_2', kind='scatter',
hover_cols=['name', 'type_1', 'type_2'],
width=600, height=400,grid=True,
title='Relationship between Weight (kg) and Height (m), by Type' )
viz1
output
另外我们也可以同样来绘制一张柱状图,代码如下
data_damage = data_pipeline.iloc[:, -18:].mean().rename('Damage')
viz2 = data_damage.hvplot(kind='bar',c='Damage',
title='正在思考要取什么标题会比较好......',
rot=30, shared_axes=False,
colorbar=True, colormap='RdYlGn_r',
)
viz2
output
接下来我们将上面绘制的所有图表,都放置在一张数据大屏当中显示,代码如下
template = pn.template.FastListTemplate(theme=DarkTheme,
title = '数据面板',
sidebar=[
pn.pane.Markdown('# 关于这个项目'),
pn.pane.Markdown('#### 这个项目的数据来源是[Kaggle](https://www.kaggle.com/datasets/mariotormo/complete-pokemon-dataset-updated-090420) and on [Wikipedia](https://en.wikipedia.org/wiki/Pok%C3%A9mon_(video_game_series)#Reception) about Pokémons to explore different types of visualizations using HoloViz tools: [Panel](https://panel.holoviz.org/) [hvPlot](https://hvplot.holoviz.org/)'),
pn.pane.JPG('图片的路径.jpg', sizing_mode='scale_both'),
pn.pane.Markdown('[图片的来源](https://unsplash.com/photos/dip9IIwUK6w)'),
pn.pane.Markdown('## Filter by Type'),
pok_type
],
main=[pn.Row(
pn.Column(viz0.panel(width=600, height=400, margin=(0,20))),
pn.Column(pn.Row(viz1.panel(width=700, height=250, margin=(0,20))),
pn.Column(viz2.panel(width=700, height=250), margin=(0,20))),
),
pn.Row(salesplot.opts(width=1400, height=200))
],
accent_base_color='#d78929',
header_background='#d78929',
sidebar_footer='<br><br><a href=".......">GitHub链接</a>',
main_max_width='100%' )
template.servable();
template.show()
output
Launching server at http://localhost:63968 <bokeh.server.server.Server at 0x1bd811e82b0>
我们按照上述的链接来浏览器中打开,数据大屏面板就可以做好了,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28