
作者:闲欢
来源:Python 技术
经常有粉丝在后台留言,问:大佬,运行你的爬虫程序怎么报错了?
我让他把报错信息发过来,看过之后一声叹息。
大多数粉丝是直接拿着代码就开始运行,然后就是等待结果,完全不去仔细阅读和理解源码,遇到报错就直接过来询问。
多数爬虫源码运行的报错都是由于访问目标网站过于频繁,从而导致目标网站返回错误或者没有数据返回。
目前大多数网站都是有反爬措施的,如果 IP 在一定时间内 请求次数超过了一定的阈值就会触发反爬措施,拒绝访问,也就是我们经常听到的“封IP”。
那么怎么解决这个问题呢?
一种解决办法就是降低访问频率,访问一次就等待一定时长,然后再次访问。这种方法对于反爬措施不严格的网站是有效的。
如果遇到反爬措施严格的网站,访问次数多了还是会被封杀。而且有时候你需要爬取数据,这种解决办法会使获取数据的周期特别长。
第二种解决办法就是使用代理 IP。我不断地切换 IP 访问,让目标网站认为是不同的用户在访问,从而绕过反爬措施。这也是最常见的方式。
接着,我们又面临一个问题:哪来这么多独立 IP 地址呢?
最省事的方式当然是花钱买服务,这种花钱买到的 IP 一般都是比较稳定可靠的。
今天我们来聊一下不花钱免费获取代理 IP 的方式。
ProxyPool 是一个爬虫的代理 IP 池,主要功能为定时采集网上发布的免费代理验证入库,定时验证入库的代理保证代理的可用性,提供API和CLI两种使用方式。
同时你也可以扩展代理源以增加代理池IP的质量和数量。
我们可以通过两种方式获取 ProxyPool 项目。
第一种是通过命令行下载:
git clone git@github.com:jhao104/proxy_pool.git
第二种是下载对应的 zip 压缩包:
我们获取到项目之后,进入到项目的根目录,运行下面的代码来安装项目所需的依赖包:
pip install -r requirements.txt
要在本地运行项目,我们需要针对本地环境修改一些配置。打开项目中的 setting.py 这个文件,根据自己本地的环境和要求修改配置。
# setting.py 为项目配置文件 # 配置API服务 HOST = "0.0.0.0" # IP PORT = 5000 # 监听端口 # 配置数据库 DB_CONN = 'redis://:pwd@127.0.0.1:8888/0' # 配置 ProxyFetcher PROXY_FETCHER = [ "freeProxy01", # 这里是启用的代理抓取方法名,所有fetch方法位于fetcher/proxyFetcher.py "freeProxy02", # .... ]
主要修改的几项配置是监听端口(PORT)、 Redis 数据库的配置(DB_CONN)和启用的代理方法名(PROXY_FETCHER)。
修改完配置之后,我们就可以愉快地使用了。
这个项目总体分为两个部分:爬取代理 IP 和 取用代理 IP。
如果你要启用爬取代理 IP 的服务,直接运行下面命令:
python proxyPool.py schedule
启动之后,你就可以看到如下的控制台信息了:
程序每隔一段时间就会定时爬取一下,直到我们的 IP 池里面有一定数量的可用 IP 。
其实,作者在这个项目中运用的原来就是到一些免费的代理网站采集 IP,然后测试 IP 的可用性,可用的就存入 Redis 中,不可用就丢弃。
所以你完全可以自己写一套程序实现这个逻辑。
要使用代理 IP,你需要启动 webApi 服务:
python proxyPool.py server
启动web服务后, 默认配置下会开启 http://127.0.0.1:5010 的api接口服务:
如果要在爬虫代码中使用的话, 可以将此api封装成函数直接使用,例如:
import requests def get_proxy(): return requests.get("http://127.0.0.1:5010/get/").json() def delete_proxy(proxy): requests.get("http://127.0.0.1:5010/delete/?proxy={}".format(proxy)) # your spider code def getHtml(): # .... retry_count = 5 proxy = get_proxy().get("proxy") while retry_count > 0: try:
html = requests.get('http://www.example.com', proxies={"http": "http://{}".format(proxy)}) # 使用代理访问 return html except Exception:
retry_count -= 1 # 删除代理池中代理 delete_proxy(proxy) return None
作为学习使用的 IP 代理池,这项目获取的足够使用了,但是对于一些复杂的爬虫项目或者商业项目的话,可能比较够呛,毕竟这种爬取的免费代理质量肯定没有那么好,不稳定是正常的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05