京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:闲欢
来源:Python 技术
经常有粉丝在后台留言,问:大佬,运行你的爬虫程序怎么报错了?
我让他把报错信息发过来,看过之后一声叹息。
大多数粉丝是直接拿着代码就开始运行,然后就是等待结果,完全不去仔细阅读和理解源码,遇到报错就直接过来询问。
多数爬虫源码运行的报错都是由于访问目标网站过于频繁,从而导致目标网站返回错误或者没有数据返回。
目前大多数网站都是有反爬措施的,如果 IP 在一定时间内 请求次数超过了一定的阈值就会触发反爬措施,拒绝访问,也就是我们经常听到的“封IP”。
那么怎么解决这个问题呢?
一种解决办法就是降低访问频率,访问一次就等待一定时长,然后再次访问。这种方法对于反爬措施不严格的网站是有效的。
如果遇到反爬措施严格的网站,访问次数多了还是会被封杀。而且有时候你需要爬取数据,这种解决办法会使获取数据的周期特别长。
第二种解决办法就是使用代理 IP。我不断地切换 IP 访问,让目标网站认为是不同的用户在访问,从而绕过反爬措施。这也是最常见的方式。
接着,我们又面临一个问题:哪来这么多独立 IP 地址呢?
最省事的方式当然是花钱买服务,这种花钱买到的 IP 一般都是比较稳定可靠的。
今天我们来聊一下不花钱免费获取代理 IP 的方式。
ProxyPool 是一个爬虫的代理 IP 池,主要功能为定时采集网上发布的免费代理验证入库,定时验证入库的代理保证代理的可用性,提供API和CLI两种使用方式。
同时你也可以扩展代理源以增加代理池IP的质量和数量。
我们可以通过两种方式获取 ProxyPool 项目。
第一种是通过命令行下载:
git clone git@github.com:jhao104/proxy_pool.git
第二种是下载对应的 zip 压缩包:
我们获取到项目之后,进入到项目的根目录,运行下面的代码来安装项目所需的依赖包:
pip install -r requirements.txt
要在本地运行项目,我们需要针对本地环境修改一些配置。打开项目中的 setting.py 这个文件,根据自己本地的环境和要求修改配置。
# setting.py 为项目配置文件 # 配置API服务 HOST = "0.0.0.0" # IP PORT = 5000 # 监听端口 # 配置数据库 DB_CONN = 'redis://:pwd@127.0.0.1:8888/0' # 配置 ProxyFetcher PROXY_FETCHER = [ "freeProxy01", # 这里是启用的代理抓取方法名,所有fetch方法位于fetcher/proxyFetcher.py "freeProxy02", # .... ]
主要修改的几项配置是监听端口(PORT)、 Redis 数据库的配置(DB_CONN)和启用的代理方法名(PROXY_FETCHER)。
修改完配置之后,我们就可以愉快地使用了。
这个项目总体分为两个部分:爬取代理 IP 和 取用代理 IP。
如果你要启用爬取代理 IP 的服务,直接运行下面命令:
python proxyPool.py schedule
启动之后,你就可以看到如下的控制台信息了:
程序每隔一段时间就会定时爬取一下,直到我们的 IP 池里面有一定数量的可用 IP 。
其实,作者在这个项目中运用的原来就是到一些免费的代理网站采集 IP,然后测试 IP 的可用性,可用的就存入 Redis 中,不可用就丢弃。
所以你完全可以自己写一套程序实现这个逻辑。
要使用代理 IP,你需要启动 webApi 服务:
python proxyPool.py server
启动web服务后, 默认配置下会开启 http://127.0.0.1:5010 的api接口服务:
如果要在爬虫代码中使用的话, 可以将此api封装成函数直接使用,例如:
import requests def get_proxy(): return requests.get("http://127.0.0.1:5010/get/").json() def delete_proxy(proxy): requests.get("http://127.0.0.1:5010/delete/?proxy={}".format(proxy)) # your spider code def getHtml(): # .... retry_count = 5 proxy = get_proxy().get("proxy") while retry_count > 0: try:
html = requests.get('http://www.example.com', proxies={"http": "http://{}".format(proxy)}) # 使用代理访问 return html except Exception:
retry_count -= 1 # 删除代理池中代理 delete_proxy(proxy) return None
作为学习使用的 IP 代理池,这项目获取的足够使用了,但是对于一些复杂的爬虫项目或者商业项目的话,可能比较够呛,毕竟这种爬取的免费代理质量肯定没有那么好,不稳定是正常的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31