
作者:俊欣
来源:关于数据分析与可视化
相信对于不少的数据分析从业者来说呢,用的比较多的是Pandas以及SQL这两种工具,Pandas不但能够对数据集进行清理与分析,并且还能够绘制各种各样的炫酷的图表,但是遇到数据集很大的时候要是还使用Pandas来处理显然有点力不从心。
今天小编就来介绍另外一个数据处理与分析工具,叫做Polars,它在数据处理的速度上更快,当然里面还包括两种API,一种是Eager API,另一种则是Lazy API,其中Eager API和Pandas的使用类似,语法类似差不太多,立即执行就能产生结果。
而Lazy API和Spark很相似,会有并行以及对查询逻辑优化的操作。
我们先来进行模块的安装,使用pip命令
pip install polars
在安装成功之后,我们分别用Pandas和Polars来读取数据,看一下各自性能上的差异,我们导入会要用到的模块
import pandas as pd import polars as pl import matplotlib.pyplot as plt
%matplotlib inline
本次使用的数据集是某网站注册用户的用户名数据,总共有360MB大小,我们先用Pandas模块来读取该csv文件
%%time df = pd.read_csv("users.csv")
df.head()
output
可以看到用Pandas读取CSV文件总共花费了12秒的时间,数据集总共有两列,一列是用户名称,以及用户名称重复的次数“n”,我们来对数据集进行排序,调用的是sort_values()方法,代码如下
%%time df.sort_values("n", ascending=False).head()
output
下面我们用Polars模块来读取并操作文件,看看所需要的多久的时间,代码如下
%%time data = pl.read_csv("users.csv") data.head()
output
可以看到用polars模块来读取数据仅仅只花费了730毫秒的时间,可以说是快了不少的,我们根据“n”这一列来对数据集进行排序,代码如下
%%time data.sort(by="n", reverse=True).head()
output
对数据集进行排序所消耗的时间为1.39秒,接下来我们用polars模块来对数据集进行一个初步的探索性分析,数据集总共有哪些列、列名都有哪些,我们还是以熟知“泰坦尼克号”数据集为例
df_titanic = pd.read_csv("titanic.csv")
df_titanic.columns
output
['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', ......]
和Pandas一样输出列名调用的是columns方法,然后我们来看一下数据集总共是有几行几列的,
df_titanic.shape
output
(891, 12)
看一下数据集中每一列的数据类型
df_titanic.dtypes
output
[polars.datatypes.Int64, polars.datatypes.Int64, polars.datatypes.Int64, polars.datatypes.Utf8, polars.datatypes.Utf8, polars.datatypes.Float64, ......]
我们来看一下数据集当中空值的分布情况,调用null_count()方法
df_titanic.null_count()
output
我们可以看到“Age”以及“Cabin”两列存在着空值,我们可以尝试用平均值来进行填充,代码如下
df_titanic["Age"] = df_titanic["Age"].fill_nan(df_titanic["Age"].mean())
计算某一列的平均值只需要调用mean()方法即可,那么中位数、最大/最小值的计算也是同样的道理,代码如下
print(f'Median Age: {df_titanic["Age"].median()}')
print(f'Average Age: {df_titanic["Age"].mean()}')
print(f'Maximum Age: {df_titanic["Age"].max()}')
print(f'Minimum Age: {df_titanic["Age"].min()}')
output
Median Age: 29.69911764705882 Average Age: 29.699117647058817 Maximum Age: 80.0 Minimum Age: 0.42
我们筛选出年龄大于40岁的乘客有哪些,代码如下
df_titanic[df_titanic["Age"] > 40]
output
最后我们简单地来绘制一张图表,代码如下
fig, ax = plt.subplots(figsize=(10, 5))
ax.boxplot(df_titanic["Age"])
plt.xticks(rotation=90)
plt.xlabel('Age Column')
plt.ylabel('Age')
plt.show()
output
总体来说呢,polars在数据分析与处理上面和Pandas模块有很多相似的地方,其中会有一部分的API存在着差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29