京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中常见的七种回归分析以及R语言实现(四)---多项式回归
在我们平时做回归的时候,大部分都是假定自变量和因变量是线性,但有时候自变量和因变量可能是非线性的,这时候我们就可能需要多项式回归了,多项式回归就是自变量和因变量是非线性所做的一个回归模型,其表达式:
Y=A0+A1X1+A2X2^2+ANXN^2+u
公式存手打,不是很好看,其特定就是右边的等式只有一个自变量,但却以不同的次幂出现,这时候在令Xn^n=XnJ,将模型转换成相应的多元线性回归模型
Y=A0+A1X1J+A2X2J+A3X3J....+u等,从而可以使用最小二乘法进行参数估计;
R语言代码,这里我使用R语言自带的身高体重的数据作为示例,也好久没做一个完整的分析了,这次稍微分析全一些,可以参考《R语言实战》回归篇
确定问题
首先我们要想知道升高和体重是否有什么关联,如果有关联那又是怎么样的关联呢?
数据说明
这里我们使用R语言自带的women数据集,这个不需要安装说明包,R语言自己就自带了,存在两个字段,体重和身高
height 身高
weight 体重
数据探索和可视化
首先我们先使用head()函数看看数据的前六行,因为这样我们可以大致确定数据集的字段名称和数据内容;然后在使用summary()得到数据集的总概括
head(women)
体重的数值大约是是身高的一半,这是我们的猜测;
summary(women)
体重的最小值是58,最大值是72,均值为65;这时候我们在使用看一下身高随体重的分布,因为数据集就两个列;可以直接使用Plot函数
plot(women)
可以看得出体重和身高大致呈现线性关系,略有非线性的因素;这时候我们在回归建模前先看看两个变量的相关系数,这时候我们使用cor函数得到他们的皮尔森相关系数矩阵
cor(women)
身高体重相关系数高达0.995,说明高度相关;接下来我们使用lm函数建模
fit <- lm(weight~height,data=women)
summary(fit)
截距项和体重都和身高高度显著,模型残差1.525,调整后的可决系数是0.9903;模型算是接近完美了,不过由于我们前面看到数据有些轻微的非线性分布,我们能否改进这个模型呢?
多项式回归
这里我们使用多项式回归去拟合数据,给它增加一个二次项,也就是height^2,这里不能增加过多的幂次项,因为有可能导致过拟合,I(height^2),I函数具体用法可以查查;
fit2 <- lm(weight~height+I(height^2),data=women)
summary(fit2)
从上结果上三个项都高度显著,模型貌似更优了,模型残差0.384,调整后的可决系数0.999;
这里就说那么多
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12