
数据分析中常见的七种回归分析以及R语言实现(四)---多项式回归
在我们平时做回归的时候,大部分都是假定自变量和因变量是线性,但有时候自变量和因变量可能是非线性的,这时候我们就可能需要多项式回归了,多项式回归就是自变量和因变量是非线性所做的一个回归模型,其表达式:
Y=A0+A1X1+A2X2^2+ANXN^2+u
公式存手打,不是很好看,其特定就是右边的等式只有一个自变量,但却以不同的次幂出现,这时候在令Xn^n=XnJ,将模型转换成相应的多元线性回归模型
Y=A0+A1X1J+A2X2J+A3X3J....+u等,从而可以使用最小二乘法进行参数估计;
R语言代码,这里我使用R语言自带的身高体重的数据作为示例,也好久没做一个完整的分析了,这次稍微分析全一些,可以参考《R语言实战》回归篇
确定问题
首先我们要想知道升高和体重是否有什么关联,如果有关联那又是怎么样的关联呢?
数据说明
这里我们使用R语言自带的women数据集,这个不需要安装说明包,R语言自己就自带了,存在两个字段,体重和身高
height 身高
weight 体重
数据探索和可视化
首先我们先使用head()函数看看数据的前六行,因为这样我们可以大致确定数据集的字段名称和数据内容;然后在使用summary()得到数据集的总概括
head(women)
体重的数值大约是是身高的一半,这是我们的猜测;
summary(women)
体重的最小值是58,最大值是72,均值为65;这时候我们在使用看一下身高随体重的分布,因为数据集就两个列;可以直接使用Plot函数
plot(women)
可以看得出体重和身高大致呈现线性关系,略有非线性的因素;这时候我们在回归建模前先看看两个变量的相关系数,这时候我们使用cor函数得到他们的皮尔森相关系数矩阵
cor(women)
身高体重相关系数高达0.995,说明高度相关;接下来我们使用lm函数建模
fit <- lm(weight~height,data=women)
summary(fit)
截距项和体重都和身高高度显著,模型残差1.525,调整后的可决系数是0.9903;模型算是接近完美了,不过由于我们前面看到数据有些轻微的非线性分布,我们能否改进这个模型呢?
多项式回归
这里我们使用多项式回归去拟合数据,给它增加一个二次项,也就是height^2,这里不能增加过多的幂次项,因为有可能导致过拟合,I(height^2),I函数具体用法可以查查;
fit2 <- lm(weight~height+I(height^2),data=women)
summary(fit2)
从上结果上三个项都高度显著,模型貌似更优了,模型残差0.384,调整后的可决系数0.999;
这里就说那么多
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26