
大数据时代,这项收集数据的技能不可少
大数据是未来的“新石油”。《人类简史:从动物到上帝》的作者尤瓦尔·赫拉利说:大数据将是人类自由意志的终结,数据主义将取代以往的宗教和人文主义,成为未来的信仰。人人都在谈大数据,谈DT时代,我们剥去社会附加上的外衣,则回归“数据”二字。
那如何获取数据呢?
在运营公众号这么长一段时间,经常有人问超模君:超模君,我需要什么的数据,该怎么处理,或者直接问超模君,能不能给我提供一些数据?
其实超模君内心是奔溃的。。。而一般我给出的建议如果没有整理好的数据,可以尝试做个爬虫试试。而在获取数据的道路上并不简单,爬虫可谓是“麻雀虽小,五脏俱全”,爬虫虽然操作起来很简单,用十几行脚本语言就可以搞定,但其中可涉及到网络通信,字符串处理,数据库等,能使用到一种语言的几乎所有组件。
一言不合就上代码
我们先来看一个最简单的最简单的爬虫,用python写成,只需要三行。
import requests
url="http://www.cricode.com"
r=requests.get(url)
上面这三行爬虫程序,就如下面这三行情诗一般,很干脆利落。
是好男人,
就应该在和女友吵架时,
抱着必输的心态。
上面那个最简单的爬虫,不是一个完整的爬虫,因为爬虫通常需要以下3个步骤:
1)给定的种子URLs,爬虫程序将所有种子URL页面爬取下来
2)爬虫程序解析爬取到的URL页面中的链接,将这些链接放入待爬取URL集合里
3)重复1、2步,直到达到指定条件才终止爬取
因此,一个完整的爬虫大概是这样子的:
import requests #用来爬取网页
from bs4 import BeautifulSoup #用来解析网页
seds = ["http://www.hao123.com", #我们的种子
"http://www.csdn.net",
"http://www.cricode.com"]
sum = 0 #我们设定终止条件为:爬取到100000个页面时,就不玩了
while sum < 10000 :
if sum < len(seds):
r = requests.get(seds[sum])
sum = sum + 1
do_save_action(r)
soup = BeautifulSoup(r.content)
urls = soup.find_all("href",.....) //解析网页
for url in urls:
seds.append(url)
else:
break
上面那个完整的爬虫,不足20行代码,相信你能找出20个需要改进的地方来。因为它的缺点实在是太多了。下面列举一下它的N个缺点:
1)我们的任务是爬取1万个网页,按上面这个程序,一个人在默默的爬取,假设爬起一个网页3秒钟,那么,爬一万个网页就要3万秒钟。MGD,我们可以考虑开启多个线程去一起爬取,或者用分布式架构去并发地爬取网页。
2)种子URL和后续解析到的URL都放在一个列表里,我们应该将这些待爬取的URL存放到一个新的更合理的数据结构里,例如队列或者优先队列。
3)对各个网站的URL,我们一视同仁,然而,我们应该是要区别对待的。应当考虑大站好站优先原则。
4)我们每次发起请求,都是根据URL来发起的,而在这个过程中会牵涉到DNS解析(将URL转换成 IP 地址)。一个网站通常有数以万计的URL,所以我们可以考虑将这些网站域名的 IP 地址进行缓存,避免每次都发起DNS请求,浪费时间。
5)解析到网页中的URLs后,我们没有做任何去重处理,全部放入了待爬取的列表中。事实上,可能有很多链接是重复的,我们做了很多无用功。
6)…..
那么,真正的问题来了,学挖掘机到底哪家强?
现在我们就来列出上面找出的几个问题的解决方案。
1)如何做到并行爬取
我们可以有多重方法去实现并行。
多线程或者线程池方式,一个爬虫程序内部开启多个线程。同一台机器开启多个爬虫程序,这样,我们就有N多爬取线程在同时工作。能大大缩短时间。
此外,当我们要爬取的任务特别多时,一台机器、一个网点明显不够,这时我们就要考虑分布式爬虫了。常见的分布式架构有:主从(Master——Slave)架构、点对点(Peer to Peer)架构,混合架构等。
说到分布式架构,我们需要考虑的问题就有很多,比如我们需要分派任务,各个爬虫之间需要通信合作,共同完成任务,不要重复爬取相同的网页。分派任务时我们要做到公平公正,就需要考虑如何进行负载均衡。负载均衡,我们第一个想到的就是Hash,比如根据网站域名进行hash。
负载均衡分派完任务之后,并不意味着万事大吉了,万一哪台机器崩溃了呢?原先指派给崩溃的那台机器的任务应该再指派给哪台机器?又或者哪天要增加几台机器,任务重新分配问题该如何解决?
用一致性Hash算法就是一个比较好的解决方案。
2)如何对待待抓取队列
类似于操作系统如何调度进程的场景。
不同的网站,重要程度不同,因此,可以设计一个优先级队列来存放待爬取的网页链接。这样一来,每次抓取时,重要的网页都会被我们优先爬取。
另外,你也可以效仿操作系统的进程调度策略之多级反馈队列调度算法。
3)进行DNS缓存
为了避免每次都发起DNS查询,我们可以将DNS进行缓存。DNS缓存当然是设计一个hash表来存储已有的域名及其 IP 。
4)进行网页去重
说到网页去重,应该都会想到垃圾邮件过滤。垃圾邮件过滤的一个经典的解决方案是Bloom Filter(布隆过滤器)。布隆过滤器原理简单来说就是:建立一个大的位数组,然后用多个Hash函数对同一个url进行hash得到多个数字,然后将位数组中这些数字对应的位置为1。下次再来一个url时,同样是用多个Hash函数进行hash,得到多个数字,我们只需要判断位数组中这些数字对应的为是全为1,如果全为1,那么说明这个url已经出现过。如此,便完成了url去重的问题。不过,这种方法会有误差,但是只要误差在我们的接受范围之内,就像是1万个网页,我们只爬取到了9999个,剩下那1个网页,谁在乎呢!
5)数据存储的问题
数据存储同样是一个很有技术含量的问题。用关系数据库存取还是用NoSQL,或者是自己设计特定的文件格式进行存储,都有很大工程可做。
6)如何完成进程间通信
分布式爬虫,离不开进程间的通信。我们可以以规定的数据格式进行数据交互,去完成进程间的通信。
7)……
废话说了那么多,真正的问题来了,问题不是学挖掘机到底哪家强?而是如何实现上面这些东西!:)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26