
数据分析中常见的七种回归分析以及R语言实现(二)---逐步回归
接着上篇文章,这里讲一下逐步回归,那么大家应该都知道逐步回归是什么样的作用了,就是为我们剔除一些不重要或者不显著的自变量,使得回归方程最优形式去预测因变量;其中主要思路将所有自变量按照对因变量Y的作用大小,显著程度,由大到小引入回归方程中;其中主要通过几个统计值来识别重要变量,可决系数,T值和AIC值,通过这三个值来添加和删除自变量来拟合模型。
大概步骤这样,首先我们在实施每一步都要对引入方程的变量计算其偏回归平方和,为什么我们要计算偏回归平方和呢,这个好比偏相关系数一样,这个主要放映自变量和因变量之间的相关程度的偏差平方和,然后选择一个偏回归平方和最小的变量进行显著性检验,如果显著则保留,这时方程中其他的几个变量也都不需要剔除,因为最小偏差平方和都显著了,其他的更不需要了,相反,如果不显著,则要提出变量,然后按偏回归平方和小到大依次对方程中其他变量进行F检验,将对Y不显著的变量全部提出,保留的都是显著,接着再对未引入回归方程中的变量分别计算其偏回归平方和,并选取其中偏回归平方和最大的一个变量,同样进行显著性检验,显著则引入该变量进入方程,,这个过程一直下去,直到在回归方程中的变量都不能剔除而又无新变量可以引入时,逐步回归过程就结束了;按照其选择方式的可以分为三种,向前逐步回归法,每次增加一个自变量到模型中,直到添加变量不会使模型有所改进为止;向后逐步回归从模型包含所有自变量开始,一次删除一个变量,直到会降低模型质量为止;还有一种是是向前向后逐步回归,通常我们称之为逐步回归,就是我们上段讲一样,每次的引入然后重新评估变量,然后剔除对模型没有贡献的变量,一直到模型最优为止;
这里我们就使用R语言实战里面的代码给大家做个实例,这里使用的是MASS包中的stepAIC()函数可以实现逐步回归模型,这个依据的AIC准则,模型的话就使用我们第一篇文章中的模型作为参照
载入包和数据集
library(nutshell)
library(MASS)
data(team.batting.00to08)
查看前六行
head(team.batting.00to08)
数据成功载入,这时候我们进行向后逐步回归
runs.lm <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies+stolenbases+caughtstealing,data=team.batting.00to08)
lm_back<-stepAIC(runs.lm,direction = "backward")
结果太长,分段截图,开始AIC值
最后得到AIC值已经结果式,AIC值的减少所以模型得到了优化,我们的逐步回归法是有效的
最后我们使用使用summary()函数打印模型结果
summary(lm_back)
从上图得知全部变量都显著有效,这里就说到这里,有什么问题的话下方评论一起交流
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26