京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我对数据科学的热情始于大约两年半前。我在做一份与数据科学无关的工作。对我来说,转行是一个很大的挑战,因为我有很多东西要学。
经过两年的学习和奉献,我终于找到了第一份数据科学家的工作。当然,我的学习之旅并没有停止。当我做数据科学家的时候,我学到了很多新东西。
学习部分不会改变。然而,我学什么和怎么学发生了巨大的变化。在本文中,我想详细说明这些变化。如果你正在努力成为一名数据科学家,你可能会经历同样的事情。
重要的是要强调,作为一名数据科学家需要不断学习。数据科学仍在发展,你需要时刻保持新鲜。我认为数据科学还不是一个成熟的领域,所以新的技术和概念经常被引入。
对于一个现实生活中的问题来说,1000万行并不多。
对我来说,最明显的变化是数据的大小。当我自己学习的时候,我正在练习最多有10万行的数据集。我现在认为它是一个小数据集。数据的大小取决于您正在处理的字段和问题。一般来说,1000万行对于一个实际的问题来说并不多。
使用大型数据集有其自身的挑战。首先,我需要学习能够处理此类数据集的新工具。在我开始做数据科学家之前,熊猫对我来说绰绰有余。然而,它并不是一个拥有大规模数据的高效工具。
允许分布式计算的工具更受青睐。Spark是其中最受欢迎的一个。它是一个用于大规模数据处理的分析引擎。Spark允许您将数据和计算分散到集群中,以实现性能的大幅提升。
幸运的是,可以将Spark与Python代码一起使用。PySpark是一个用于Spark的Python API,它结合了Python的简单性和Spark的高效性。
另一个大的变化是从本地环境到云环境。当我学习的时候,我在电脑里做所有的事情(即本地工作)。这对练习和学习来说已经足够了。
然而,一家公司在当地经营的可能性极小。大多数公司都在云中工作。数据存储在云中,计算在云中完成,等等。
为了高效地完成工作,获得对云工具和服务的全面理解是非常重要的。云提供商多种多样,但主要参与者是AWS、Azure、Google云平台。我必须学习如何使用他们的服务和管理存储在云中的数据。
作为一名数据科学家,我经常使用的另一个工具是ISGit。我在学习的时候学会了基本的git命令。但是,在生产环境中工作时就不同了。Git是一个版本控制系统。它维护对代码所做的所有更改的历史记录。
Git允许协作工作。你可能会作为一个团队在项目上工作。因此,即使你在一家小型初创企业工作,git也是一项必备技能。项目是用Git开发和维护的。
Git比它从外部看起来要复杂一点。然而,你在做了几个项目后就习惯了。
工具并不是我学习过程中唯一改变的东西。我处理数据的方式也发生了变化。当您处理一个可随时使用的数据集时,在清理和处理数据方面,您无能为力。例如,在机器学习任务的情况下,您可以在几个简单的步骤后应用模型。
在你的工作中情况会不同。一个项目的很大一部分花费在准备数据上。我不是说只是清理原始数据。这也是重要的一步。然而,探索数据中的底层结构和理解特征之间的关系是至关重要的。
如果您正在处理一个新问题,定义数据需求也将是您的工作。这是另一个需要一套特殊技能的挑战。领域知识是其中必不可少的一部分。
特征工程比机器学习模型的超参数调整重要得多。通过超参数调优可以实现的功能是有限的,因此可以在一定程度上提高性能。另一方面,一个信息特性有可能大大改善一个模型。
在我作为一名数据科学家开始工作之前,我专注于理解机器学习算法和如何调整模型。我现在把大部分时间都花在准备数据上。
我所说的就绪包括许多步骤,例如
统计知识对这些步骤非常重要。因此,我强烈建议提高你在这方面的知识。它会在你的数据科学生涯中帮助你很多。
有大量的资源来学习数据科学。您可以使用它们来提高您在数据科学的任何构建块中的技能。然而,这些资源并不能提供真正的工作经验。没有错。当你找到第一份工作时,让自己准备好学习一套不同的材料。
谢谢你的阅读。如果你有任何反馈请让我知道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24