京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果你是一个书呆子般的数据科学家,想要开始作为一个独立(远程)自由数据科学家工作,这篇文章是为你准备的。从现在朝九晚五的工作过渡到远程自由职业是一种解放的经历。最终收益是巨大的,包括:
我叫保·拉巴塔·巴约。我是一个自由数据科学家和ML工程师谁作为一个远程自由职业者在过去2年以上的工作。之前,我曾在一家顶级移动游戏公司Nordeus担任数据科学家。在我周围,我有一群伟大的数据科学家和了不起的数据工程师。当我加入这个团队的时候,他们已经在内部建立了数据分析平台,帮助公司管理一个每天活跃用户超过200万的游戏。我觉得我是另一只在一个成熟的蜂群中运作的蜜蜂。我90%的时间都花在技术上,包括数据分析以改进产品和ML开发以提高效率。10%的时间用于与团队其他成员交流我正在做的事情。
对于像我们这样的书呆子、数据科学家和ML怪人来说,这种分裂感觉很棒。然而,这种舒适有一个代价,我在两个不断的想法中想到了
最终,我辞去了工作,开始从事远程自由数据科学家的工作。这一转变既具有挑战性,也令人难以置信地丰富。在此过程中,我收集了一些知识,并将其浓缩为4个实用技巧,以帮助您加入我的行列,并开始走在另一边。
你的第一个问题是:我在哪里找到我的第一个项目?
互联网上有大量与数据相关的工作。如果你访问像Upwork这样的网站,你可以看到每分钟都有新的职位发布。是的,有很多数据科学工作,这是你每天早上都应该感谢的事情。然而,在那些巨大的网站上也有很多竞争。来自世界各地的自由职业者试图和你在同一个池塘里钓鱼。
你可能会想:
“考虑到我的技能和生活成本,让我们设定一个比我认为合理的低的工资,以增加我找到第一份工作的机会。”
大错。顺便说一句,我犯了两次这个错误。在我的第二个自由职业项目中,我和同一时区的另一位数据工程师一起工作,他的工资是我的两倍多。他第一次做自由职业。无数次我后悔我的聪明的定价。
大多数客户愿意支付更高的费率以减少项目的不确定性。你是一个非常合格的工作,过度的价格折扣也被解释为项目成功的更高的不确定性。此外,请记住,你试图说服另一个人,而不是成本最小化的Android。你需要表现出自信,设定一个比你认为自己价值更低的价格与此相反。
如今,有很多自由职业平台。我已经使用了其中的3个(Upwork,Toptal和Braintrust),但也可以随意探索其他的。
这些平台可分为两类:
大多数客户不是寻找一个全面的数据科学家,而是寻找一个可以解决他们问题的特定配置文件。一个非常了解如何
试图把自己表现为无所不能的终极自由数据科学家是很有诱惑力的,但这不是客户想要的。此外,数据科学是一个巨大的市场。通过缩小你的侧写,你仍然在一个相当大的池塘里钓鱼。记住这一点。
我的第一份自由职业可以粗略地描述为“我们的数据工程师没有一个能在Tableau中构建一个漂亮的仪表板。你能吗?“。这不是我能想到的最令人兴奋的工作,但这是我在以前的工作中做过一千次的事情。我是这方面的专家,这是对客户有价值的。
从专注于你已经是专家的项目开始你的道路。避免冒名顶替综合症,赢得你的第一张支票,建立信心。
兼职工作,甚至每小时工作,你可以学到和以前朝九晚五一样的东西。利用这个机会,在额外的时间里学习新的技能,为下一份合同中你想要工作的下一个领域做准备。
一个典型的错误是这样开始一个提案:
“亲爱的X。我叫Y,是一名数据科学家,在a、B、C和D领域有N年的经验。我有E方面的背景,而且……”
当然可以。你的潜在客户想知道你不可思议的背景。但她不是你爸妈。他想解决这个问题,所以直奔主题。从第一段开始专注于问题,没有序言和只能让她打哈欠的陈述。使用项目符号来列举与问题直接相关的非常具体的事情,并减少认知负荷。还有,把BS控制在最小。你喜欢读别人如何赞美自己吗?你的潜在客户也一样。
自从我开始做自由职业以来,我一直保留着我写的每一份提案。所有为我赢得工作的提案都有这样的结构:
“嗨X!我的名字是Y,最近我构建了N个与您的问题Z直接相关的东西:
我很乐意帮你做这件事。让我们本周打个电话来了解细节。最佳,Y.“
作为一名数据科学家的自由远程工作在智力和经济上都是令人难以置信的回报。如果这些建议能在你的自由职业道路上帮助你,我会感到非常高兴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31