京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在软件开发、信息安全和数据分析的长期职业生涯中,我观察到,除非得到非常好的管理,否则大型、复杂和压倒性的项目可能无法满足风险承担者的需求。相比之下,我参与的大多数成功的数据分析项目在范围、规模、团队规模和时间表上都很小。它们通常需要几天、几周或几个月的时间来完成,而不是需要几年的时间,并且通常满足最终用户的需求。
健全的管理、敏捷实践、熟练的实践者、强大的工具、标准和指导方针可以结合起来创建一个数据分析生态系统,从而导致短的项目生命周期和有用的解决方案。以下各节描述了我的团队开发并成功利用的一些组织、项目和数据分析属性和技术。当我们在大型企业的风险管理和内部审计功能中构建数据分析程序时,您也可以将这些技术应用到您的工作环境中。
在我从事软件开发和数据分析的34年中,我观察到了许多管理和领导风格,有好的也有坏的。我最近在与一位经理一起工作时茁壮成长,这位经理创建了一个框架,并指导我们的团队在一家大型企业中建立了一个成功的部门数据分析程序。根据经验和观察,以下是他和其他模范领导者为帮助个人、团队和项目取得成功而发挥的一些属性和行动:
几年前,我参加了一个数据分析会议,会上一位演讲者描述了她作为数据科学家所需的一些技能。她说,要有效地完成工作,需要200多项技能。事实上,创建成功的数据分析解决方案需要分析师具备许多才能。要雇用和培养具备所需技能和知识的分析师,您和您的管理层可以考虑以下步骤:
大型团队的复杂项目可能会陷入困境,除非经过专业的管理。试图保持每个项目的规模和范围较小,并将团队的规模限制在一到三个最终用户和一个首席数据分析师,这可能有助于项目的成功。团队可以将数据分析师添加到复杂的项目中,这将从分工或互补技能中受益。对于大型或复杂的项目,您可能希望指派一名项目经理与团队一起工作,以确定和管理任务、时间表、风险和问题。最后,在需要的时候,在项目的业务领域中寻找主题专家。
项目团队,尤其是在软件开发中,经常将敏捷开发方法,如Scrum或看板,应用到他们的项目中,以组织任务并快速移动。我的团队有效地使用了在Microsoft OneNote中开发的看板板,以便在频繁的即席会议上在团队和经理之间跟踪和交流任务。它由一页上的三栏组成。每个任务在开始时从准备工作转移到工作中,在完成时从工作中转移到完成。
在整个项目生命周期中与最终用户、队友和经理的对话对于建立和坚持其商定的和简明的范围、目标和时间表至关重要。通过保持项目紧凑,我成功地完成了一周到三个月的项目。
如果一个项目很大很复杂,可以考虑把它分成一些较小的子项目,每个子项目都有有限的范围、目标和时间表。
一些研究人员发现,当多任务处理时,人类的表现会受到影响。给个人分配大量的项目或任务可能会适得其反。此外,虽然技能和任务多样性是可以提高个人满意度和绩效的工作组成部分(见工作特征理论),但分配给员工的项目或任务的数量应该合理,以允许员工成功并完成所有这些项目或任务。
在一个运作良好的团队中工作可以提供许多好处,例如:
有效的团队合作的好处是毫无疑问的。另一方面,某些类型的工作,如数据分析、编程和写作,通常最好由半自主工作的个人完成,通常由团队成员提供输入。他们的工作需要专注和有限的干扰。
数据分析员应该为自己配备强大的、多功能的数据分析工具,以满足他们的需求。通过这种方法,分析人员可以利用每个工具的特性并开发能力和最佳实践。以下各节描述了我的当前团队在其数据分析项目中使用的每个软件包。
AlteryX Designer-根据AlteryX的网站,设计器可以用来“自动化分析的每一步,包括数据准备、混合、报告、预测分析和数据科学。”虽然单用户许可成本数千美元,但它是一个强大的数据分析和数据科学工具。我的团队使用它来创建和运行输入数据、转换和准备数据以及以多种格式输出数据的工作流。分析人员使用它快速、轻松地创建功能强大、运行迅速的工作流。
Tableau-Tableau软件创建了一个强大的,也许是最流行的商业智能和数据可视化平台。我的团队使用Tableau Desktop连接到数据源并开发可视化工作表和仪表板。然后,我们将可视化发布到Tableau服务器,终端用户在那里查看并与它们交互。
Python-Python是一种用户友好且功能强大的编程语言,深受数据分析师和数据科学家的欢迎。与数据科学家中流行的以统计数据为中心的R语言不同,Python是一种通用语言。它是自由和容易学习。分析人员可以使用免费的库来扩展Python的功能,比如NumPyandTensorFlow。
SQL-结构化查询语言(SQL)是用于实现、操作和查询存储在关系数据库管理系统(RDBMS)中的结构化数据的标准语言。它包括多个子语言。通过其数据查询语言(DQL),分析人员可以从数据库表中查询和检索数据。RDMS数据库存储了世界各地企业的大量数据集。
Microsoft SQL Server Management Studio(SSMS)-SSMS是Microsoft的集成开发环境(IDE),用于管理和查询在其SQL Server RDBMS中实现的数据库。我使用SSMS创建和运行SQL代码来查询包含所需数据的数据库。
Rapid SQL-Rapid SQL是一种类似SSMS的IDE,用于开发SQL查询以访问存储在Oracle、SQL Server、DB2和SAP Sybase数据库中的数据。我使用快速SQL从DB2或Oracle数据库中获取数据。
Microsoft Visual Studio-Visual Studio是Microsoft的旗舰集成开发环境(IDE)。我使用Visual Studio Professional创建用Python和其他编程语言编写的应用程序。它的编辑器功能强大,带有颜色编码的语法。Visual Studio Community 2019是IDE的免费版本,可以满足您的需求。来自Microsoft的Visual Studio代码(VS Code)是另一种受程序员和数据分析师欢迎的免费IDE。
Microsoft Excel-Excel当然是一个无处不在、有用、功能强大、有时是不可或缺的工具。我使用Excel工作簿作为项目数据源和输出来创建小型数据集,执行必要的数据清理和计算,等等。像Excel这样的电子表格应用程序是任何数据分析或数据科学商店中的重要工具。
在数据分析项目中应用简明的标准和指导方针可以提高工作产品的生产率、维护和共享。以下是指导我工作的标准和指导方针。
命名标准-如何将文件夹、文件、数据库表、列和字段等项标准化,以便于一致地命名它们,并在许多产品的集合中查找工作产品。
文件夹结构标准和模板-对所有项目使用标准文件夹结构可以轻松设置新项目和查找文件夹和文件。我的团队使用以下文件夹结构模板来组织和存储所有数据分析项目的工作产品:
文件夹结构根据每个项目的需要展开和收缩。
编码标准-编码标准适用于编程,就像语法适用于英语散文一样。它们帮助我们清晰一致地组织和传达思想。我工作过的数据分析和软件开发团队从文档化的编码约定中受益。在项目中应用这些标准可以使每个代码模块的原始编码器更容易编写,任何团队成员也更容易阅读、理解、增强和维护。下面是我的团队用来指导其工作的一些编码标准的描述。
可视化样式指南-虽然编码标准可以帮助程序员理解、编写和维护代码,但可视化样式指南可以帮助数据分析师开发一致、有用和有意义的可视化。它们还可以通过提供一致的、设计良好的、易于理解的和用户友好的可视化,使数据分析项目的最终用户受益。以下是我的团队采用的一些视觉风格指南。
建立一个有效的数据分析团队并不容易,它定期构建和交付数据分析解决方案,为最终用户提供洞察力并帮助他们做出决策。但是,应用我在软件开发和数据分析的长期职业生涯中所学到、采用和开发的一些经验教训和有效实践可能会帮助您取得成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20