
注意:这是本文的第二部分。你可以在这里阅读第一部分。
当产品发生变化时,人们对它的反应会有所不同。有些人习惯于产品的工作方式,不愿意改变。这被称为首要效应或改变厌恶。其他人可能会欢迎变化,一个新功能吸引他们更多地使用产品。这被称为新奇效应。然而,这两种影响都不会持续很长时间,因为人们的行为在一定时间后会稳定下来。如果a/B测试有较大或较小的初始效应,这可能是由于新的或首要效应。这是实践中常见的问题,很多面试问题都是关于这个话题的。一个面试样本问题是:
我们在一个新特性上运行了一个a/B测试,测试成功了,所以我们向所有用户启动了这个更改。然而,在推出该特性一周后,我们发现治疗效果迅速下降。怎么回事?
答案是新奇效应。随着时间的推移,随着新鲜感的消退,重复使用会减少,所以我们观察到治疗效果下降。
现在您理解了新奇和首要效应,我们如何解决潜在的问题?这是面试中典型的跟进问题。
处理这种影响的一个方法是完全排除那些影响的可能性。我们可以只对首次用户运行测试,因为新奇效应和首要效应显然不会影响这类用户。如果我们已经进行了测试,并且我们想要分析是否有新颖性或首要效应,我们可以(1)将控制组新用户的结果与治疗组的结果进行比较,以评估新颖性效应(2)将第一次用户的结果与治疗组现有用户的结果进行比较,以获得新颖性或首要效应影响的实际估计。
在A/B试验的最简单形式中,有两种变体:对照(A)和治疗(B)。有时,我们运行一个测试与多个变体,看看哪一个是最好的所有功能。当我们要测试一个按钮的多种颜色或测试不同的主页时,可能会发生这种情况。然后我们会有不止一个治疗组。在这种情况下,我们不应该简单地使用0.05的相同显著性水平来决定检验是否显著,因为我们处理的是2个以上的变异体,错误发现的概率增加。例如,如果我们有3个治疗组与对照组进行比较,观察到至少1个假阳性的机会是多少(假设我们的显著性水平是0.05)?
我们可以得到没有假阳性的概率(假设组是独立的),
PR(FP=0)=0.95*0.95*0.95=0.857
然后获得至少有1个假阳性的概率
Pr(FP>=1)=1-Pr(FP=0)=0.143
只有3个治疗组(4个变异),假阳性(或I型错误)的概率超过14%。这称为“多重测试”问题。一个面试问题是
我们正在运行一个测试与10个变体,尝试我们的登陆页面的不同版本。1个处理获胜,P值小于0.05。你能改变吗?
答案是否定的,因为多重测试问题。有几种方法来接近它。一种常用的方法是Bonferroni校正。它将显著性水平0.05除以试验次数。对于面试问题,既然我们测量了10个测试,那么测试的显著性水平应该是0.05除以10等于0.005。基本上,只有当检验的p值小于0.005时,我们才声称检验是显著的。Bonferroni校正的缺点是它往往过于保守。
另一种方法是控制错误发现率(FDR):
fdr=e[#假阳性/#拒绝]
它度量了所有对零假设的拒绝,即所有你声明有统计上显著差异的度量。他们中有多少人有真正的差异,而有多少人是假阳性。只有当您有大量的度量,比如数百个时,这才有意义。假设我们有200个指标,并将FDR上限设为0.05。这意味着我们可以看到5次假阳性。我们每次都会在那200个指标中观察到至少10个假阳性。
理想情况下,我们看到了实际的显著治疗结果,我们可以考虑向所有用户推出该功能。但有时,我们会看到相互矛盾的结果,例如一个指标上升而另一个下降,因此我们需要做出输赢的权衡。一个面试样本问题是:
运行测试后,您会看到所需的指标,例如点击率在上升,而印象数在下降。你会怎么做决定?
在现实中,产品推出决策可能涉及到很多因素,如实施的复杂性、项目管理的努力、客户支持成本、维护成本、机会成本等。
在采访中,我们可以提供解决方案的简化版本,重点放在实验的当前目标上。它是为了最大限度地参与,保留,收入,还是其他什么?此外,我们希望量化负面影响,即非目标度量中的负面变化,以帮助我们做出决定。例如,如果收入是目标,我们可以选择它,而不是最大限度地参与,假设负面影响是可以接受的。
最后,我想向您推荐两个参考资料,让您更多地了解A/B测试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16