
作者:俊欣
来源:关于数据分析与可视化
当很多人都仗着自己年轻而对自己的身体漠不关心、眼里只想着赚钱的同时,熟不知死神已经悄悄地在逼近,今天小编就来和大家聊聊什么是猝死、猝死呈现年轻化,诱因又是什么?我们该如何正确地进行急救、挽救生命?
猝死就是突然死亡,根据世卫组织(WHO)的定义,平时身体健康或者看上去健康的人,在短时间内因自然疾病突然死亡,而这个所谓的“短时间”就是从发病到死亡的时间,目前没有公认的统一标准,世界卫生组织的定义是6小时,但是也有一些观点认为是1小时、12小时和24小时之内。
有数据显示,我国每年猝死人数高达55万人次,这就意味着每一分钟就有一个中国人发生猝死,临床上猝死分为心源性猝死和非心源性猝死两大类,其中心源性猝死占猝死的有70%-80%
p = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
.add("", [list(z) for z in zip(cate, num)])
.set_global_opts(title_opts=opts.TitleOpts(title="各种猝死死因的概率分布"),
legend_opts=opts.LegendOpts(orient="vertical",
pos_top="15%",
pos_left="5%"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
p.render("death.html")
output
究竟哪些人可能会猝死呢?一般来说
而从猝死的诱因来看,致使其发生的主要因素是情绪激动(25.66%)和劳累(24.53%),对于身体来说,情绪激动就像大坝决堤,会在短时间内对心脑等重要脏器造成冲击;
bar = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
.add_xaxis(columns)
.add_yaxis("缺血性心脏病", data1)
.add_yaxis("缺血性脑卒", data2)
.set_global_opts(title_opts=opts.TitleOpts(title="猝死风险随年龄增长而升高"), # yaxis_opts=opts.AxisOpts(min_= 500, max_=6000) )
)
bar.render("deth_risk.html")
output
而劳累则是慢性消耗,临床发现很多猝死的人,都曾经历过高强度工作状态,有数据显示,每周工作60个小时以上的人发生急性心肌梗死的可能性,是工作不超过40小时的人的两倍
另外熬夜的危害对于猝死而言也是相当明显的,有研究表明,每晚睡眠时间不超过5小时的人,发生急性心肌梗死的风险是6-8小时睡眠的人的2-3倍,除了猝死之外,高血压、糖尿病、抑郁症等疾病也和睡眠不足息息相关。
而针对猝死前的症状,在发作前身体上如颈部、后背、头皮、手心或者脚掌大量出汗。在无激烈运动、熬夜、失眠或者生病等诱因的情况下,连续几天、几周出现极度疲劳感,伴有焦虑、失眠、无症状惊醒等症状,此时应考虑心脏出现了问题。
就心源性猝死而言,其发生时,患者往往会心跳呼吸骤停、突然意识丧失、颈动脉消失、瞳孔放大。此时,只要抢救及时、准确,病人是可望得救的。急救开始的时间越早,存活率就越高。大量临床资料表明,心跳骤停4分钟之内开始急救者,存活率可有50%;超过10分钟,存活的可能性极小。
所以如果遇到心跳骤停的患者,我们要做的是第一时间为患者进行心外按压,同时让周围人呼叫120
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11