京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有一个关于ML(机器学习)的炒作列车正在进行,许多初学者正成为这个炒作列车的受害者,因为他们是因为错误的原因进入的。你的教授会解释如何获得博士学位。如果你想变得更好,或者你的同行告诉你如何获得更好的GPU和IDE(集成开发环境),这是必要的。当您开始从在线课程中学习时,您意识到您需要更大的数据集和对Python的熟练程度。在你申请工作时学习了所需的技能后,你意识到你需要的不仅仅是几门课程或证书。最终,在得到这份工作后,你意识到这是一项要求很高的工作,有时这些工作在最初阶段的报酬并不高。
本文将帮助您度过这些失望,并为您准备好面对这些问题。我们将学习很多关于初学者进入机器学习领域所面临的现实问题。
有明确的经验证据表明,您不需要大量数学,不需要大量数据,也不需要大量昂贵的计算机。-Jeremy Howard(面向程序员的实用深度学习)
是的,如果你进入ML领域,尤其是深度学习,编码是必要的。这并不意味着您先花时间学习Python、C++或R,然后才开始学习ML。当你学习基础知识时,编码部分会自然而然地出现。您不需要记住语法或模型架构,可以从简单的google搜索中搜索它们。就这么简单。世界正在走向无代码机器学习和AutoML。AutoML是一个强大的工具,它将为您执行所有的任务,并为您提供一个工作的机器学习模型。有时你只需要写两行代码而不是两百行代码就能得到类似的结果。
是的,你需要一些数学,但为了研究和推进深度学习的边界。如果您要训练您的模型并将它们部署到生产中,那么您可能需要学习MLOps,而不是数学。
应用机器学习不需要数学,但对于任何研究和突破边界,你需要学习高级统计学。-Jakubéitní
您还需要学习模型体系结构是如何工作的,以及各种矩阵函数。这些可以在8小时的课程中教授,有时您甚至不需要学习解决问题所需的所有模型架构。我是Jeremy的超级粉丝,在他用Fastai和PyTorch为程序员编写的bookDeep Learning中,他解释说在深度学习领域有很多守门人。学者们会要求你学习高级微积分,学习所有的数学模型,最终获得博士学位。在一个特定的领域使它。但你不需要这些。我见过很多没有学位、有商业背景的人现在都是领域里的专家。所以,请专注于基础知识,学习整个课程,并通过投资组合项目开始成长。
是的,但在少数情况下。现代的深度学习模型现在能够在有限的样本数下产生高精度。随着像Kaggle这样的平台的引入,甚至获取数据集现在也变得更加容易了,Kaggle有数千个开源数据集可供下载和用于商业目的。我们还可以在GitHub、DAGsHub、HuggingFace、Knoema和Google Dataset Searchch上找到数据集来训练我们的模型,并最终将其用于生产。
有些工作确实需要机器学习学位或TensorFlow证书,但如果你在GitHub和Kaggle上有强大的投资组合,这些事情就变得次要了。许多开发人员正在向机器学习过渡,他们没有专门的学位或证书来证明,但他们确实有使用深度学习模型并将其部署到生产中的经验。如果你能以某种方式向雇主证明你可以完成机器学习生命周期中的每一项任务,那么你就是完美的候选人。总的来说,如果你有一个强大的机器学习组合,就不应该在你的脑海中获得证书或学位。要获得强大的ML投资组合,请阅读:如何作为初学者构建强大的数据科学投资组合-KDnuggets。
不,我有一台旧笔记本电脑,我可以借助Kaggle平台在云GPU和TPU上训练这些庞大的模型。世界正在从个人电脑走向云电脑。您可以从Kaggle和Google Colab获得免费的CPU、GPU和TPU。还有其他平台也可以帮助您进行数据分析和创建完整的项目,如DeepNote、JetBrains Datalore和PaperSpace。这些平台为您提供了一个免费的工作空间,通过添加协作工具来构建您的机器学习产品。在我的日常工作中,我使用Deepnote进行新的研究或项目,如果我需要更好的GPU或TPU,我会切换到Kaggle Orcolab。
您不需要购买昂贵的IDE或计算来构建您的产品。现在您有了这些免费的云工具。
在获得所需的技能后,你开始在市场上找工作,但很快你就意识到公司需要更多。他们希望你了解数据工程、数据分析和MLOPS。在面试阶段,他们会询问你最近的项目和你部署模型的工作经验。
即使在学习了关键的必要技能后,你也会感到相当失望。这是因为大多数公司都在寻找有经验的个人或拥有多种技能的人。你提高机会的唯一方法就是不断学习一项新技能,不断参加机器学习比赛。这也将改善您的ML投资组合,并最终使您脱颖而出。如果你刚开始工作,很难找到工作。继续努力,最终,你会得到你梦寐以求的工作。
正如我上面提到的,它需要擅长各种技能:显然,一个优秀的机器学习工程师所需要的一切,比如好奇心、分析技能、算法知识、理解业务需求的能力,以及有效沟通的需求。还有更多。你需要善于构建需要机器学习操作经验的软件解决方案。Shanif Dhanani的机器学习工程师生活中的一天
除此之外,有时还必须执行迭代任务,如标记数据集。你可能找不到一份高薪的工作,但你最终会得到一份需要你全职和专注的工作。如果你进入这个领域只是因为它提供了一份高薪的工作,那么你应该开始考虑其他的选择。你在职业生涯中取得成功的唯一途径是对人工智能技术有坚定的热爱。
最后,我会一直建议你继续学习新的技能,开始参加Kaggle比赛。为了你的职业生涯,继续寻找新的工作,为你的技术面试做好准备。我只想向你们展示这个领域的实际情况。这并不漂亮,也不是每个人都能度过难关。只有努力工作和学习的心态,你才能找到一个舒适的职位,你有一个高薪的工作。
我们还讨论了机器学习如何不需要大量的数学、专业学位或博士学位。它不需要大量的计算能力或庞大的数据集。它只需要你的时间和努力工作。你可以在网上找到令人惊讶的课程,在学习了一些技能后,开始将这些技能应用到你的投资组合项目中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01