
SPSS分析技术:单因素方差分析
接下来将会介绍如何用SPSS做各种类型的方差分析,包括单因素方差分析,多因素方差分析,协方差分析,多元方差分析,重复测量方差分析和方差成分分析等应用原理和案例。
单因素方差分析
单因素方差分析用于分析单个自变量的不同水平是否对因变量产生显著影响。单因素方差分析将总方差分为两部分:可以由自变量解释的系统误差和无法由自变量解释的随机误差,若系统误差显著超过随机误差,则认为该自变量在取不同水平时因变量均值存在显著差异。
方差分析的原理
前面的文章虽然介绍过单因素方差分析的数据分析过程,这里再简单强调一遍。当样本数据可以做这样的归类处理,如下图所示:
首先,单因素方差分析的成对假设是:
原假设:因素的k个水平的均值相等;
备择假设:因素的k个水平的均值不完全相等;注意是不完全相等,而不是k个均值互不相等。
其次,求取组内方差和组间方差;
组间方差的计算公式为:
组内方差的计算公式为:
第三步是计算F统计量的值,以及做出假设检验判断;
上式中MSB和MSE分布称为组间方差和组内方差。在原假设为真的条件下,统计量服从自由度为k-1和k(n-1)的F分布。如果F统计量观测值较小,说明组内方差大,组间方差小,此时不能拒绝原假设;相反,就要拒绝原假设,认为自变量(因素)的k个水平对自变量有显著影响。SPSS会自动计算F统计量的观测值以及相应的概率P值,根据P值就可以完成统计检验。
案例分析
某体育高校对来自全国各地的2016级新生做了一次抽样检查,对抽到学生的身高、体重和胸围作了测量和记录,并将所有参与抽样体检的学生按省份划分为东部、中部和西部,试图分析来自不同地区学生的身高是否有差异。
问题分析
研究的问题是来自全国不同地区学生的身高是否有差异,可以理解为地区因素是否对学生身高有影响,影响因素(自变量)是地区,地区因素有三个水平(东部,中部和西部),所以适用单因素方差分析(单因素,三水平)。
分析步骤
1、选择菜单【分析】-【比较平均值】-【单因素ANOVA】,在【单因素方差分析】中选择变量【身高】,选入因变量列表;选择【地区】,将其选入因子。程序可以同时对多个因变量进行单因素方差分析,但是【因子】只能选取一个自变量。
2、单击【对比】,打开【单因素ANOVA:对比】。该选项是用来做因素不同水平的均值对比的。将多项式选中,在度中可以选择线性、二次项到五次项,表示可以利用不同的多项式对均值进行对比。我们选中线性,然后再系数中输入-1,0.5,0.5,点击下一页,再输入0.5,-1,0.5,再点击下一页,输入0.5,0.5,-1。表示将东部,中部和西部的均值配上系数进行加减对比。例如第一组系数-1,0.5,0.5,表示-1*东部均值+0.5*中部值+0.5*西部均值。
3、事后多重比较设置
单击【事后多重设置】,打开【单因素ANOVA:事后多重比较】。该对话框包括假定方差齐性和未假定方差齐性的总共18种两两对比方式,具体不同可以点击SPSS的帮助文档。这里我们选择LSD、Tukey和Tamhane’s T2检验。
4、单击【选项】,打开【单因素ANVOA】,选中描述性、方差齐性检验和平均值图。
结果解释
1、描述性统计表。
从描述性统计量表可以看出东部地区学生的平均身高和中西部的差异较大,而中西部学生的身高平均值接近。
2、方差分析表
由方差齐性检验表可得显著性概率P为0.640,大于0.05,说明东部、中部和西部三组间的方差在0.05水平上没有显著差异,即方差齐性检验通过,这是能够进行方差分析的必要条件。
3、方差分析表和线性对比
从方差分析表可以知道,F值为12.164,对应的显著性为0.000,小于0.05,所以方差分析结果是显著的,表明东部,中部和西部三组学生身高之间是有显著性差异的,具体那一组或那几组之间有差异,需要看事后两两比较。
对三组学生身高的均值赋予不同的系数,然后进行检验。由于是方差齐性的,所以看三个结果,显著性分别为0.000,0.008和0.030,说明三组系数的均值对比均有显著性差异。
4、事后检验表
可以得到两种检验方法的结果基本一致:东部与中部和东部与西部两组均值对比检验的P值均为0.000,说明两组同学间的平均身高差异显著。
5、子集检验表
将没有显著性的水平进行子集检验,可以得到中部和西部学生身高之间没有显著性差异,但是与东部学生身高有显著性差异。
6、身高均值折线图
身高均值折线图一样也可看出东部地区和中西部差异显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26