京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在科技界的所有角色中,数据科学家的头衔和工作职责可能是变化最大的。一个数据科学家必须戴很多不同的帽子,亚马逊的数据科学家的日常工作可能与微软的数据科学家有很大不同。从发现可以从收集、分析和理解数据中受益的公司业务领域,到决定必须做出哪些战略决策来提高客户满意度或购买完成率,公司可以询问许多数据科学家。
一个数据科学家应该具备专业的统计、机器学习以及通常的经济技能和知识。数据科学家需要在数学、统计学、机器学习、可视化、通信和算法实现方面有很高的技能。
此外,数据科学家必须彻底了解他们数据的业务应用程序。如果你在分析树木生长数据,你应该了解高度和树冠基高之间的差异。这种背景知识可以在工作中得到发展,但如果你已经有了在这个行业工作的经验,如果你想成为一名数据科学家,这可能是一个很大的优势。如果你已经做了五年的银行家,你在金融技术领域获得数据科学职位的几率要比在医疗保健领域高得多。
数据科学是一个相对较新的领域,不是数据科学家的人很难向外行人解释数据科学家的工作。这导致了现代数据科学家可能面临的有时是滑稽的各种职责和头衔。
一个数据科学家,根据公司和具体的工作,可以负责数据收集和清理。你也可能被要求开发机器学习模型和管道,或者作为可视化大师为你的公司服务。一些数据科学家更多地面向内部,而其他人则与内部、非技术团队甚至客户有很大关系。如果你和技术含量较低的人一起工作,你必须有出色的沟通技巧,既要写报告总结你的分析,也要展示你的发现并为未来的行动提出建议。
数据科学家(或者公司对收集、分析、可视化或预测数据的人的称呼)的主要职责是讲述数据的故事。它是从哪里来的,我们可以从它中学到什么关于过去的东西,它如何指导我们未来?为了成功地做到这一点,您需要成为业务领域的专家或具有上下文知识,以便将拼图的各个部分组合在一起,并向周围的人解释数据的重要性以及从中获得的见解。
数据科学领域内的确切职责有很多不同,数据科学领域内有很多不同的角色。无论你是想进入这个领域还是想换工作,在职称和行业方面保持开放的心态是非常重要的。我将对数据科学领域中13个不同角色的一般职责进行分解。
公司通常不擅长给数据科学领域的人赋予头衔,所以将这种细分作为经验法则而不是确切的定义是很重要的。如果其中一个听起来对你来说很完美,那么你可以把搜索范围缩小到一个标题,但如果其中几个听起来很好,那么我会更灵活地使用你在搜索时使用的标题。(如果头衔对你来说真的很重要,当你得到工作机会时,你可以随时把它作为谈判的一部分!)
Any modern company of any significant size around the world has a data science department, and a data engineer at one company might have the same responsibilities as a marketing scientist at another company. Data science jobs are not well-labeled, so make sure to cast a wide net.
数据分析师更关注数据收集、清理和聚合。您必须能够轻松地导航复杂的SQL查询。您将负责设计并向非技术涉众交付报告。您还将有机会设计数据模型、可视化和预测模型。
数据库管理员管理数据库实例,包括内部实例和云实例。作为数据库管理员,您需要构建、配置和维护生产环境。您还将负责您所负责的数据库的性能、可用性和安全性。准备好领导数据操作并提供关键任务的随叫随到支持。
数据建模师创建概念、技术、逻辑以及有时物理数据模型。您必须果断地选择和维护数据建模和设计标准,以便为公司的数据创建一个统一的愿景。
数据建模人员还必须开发实体关系模型和设计数据库。您可能需要为您的团队或公司改进数据收集和对未充分表示的数据类别的分析,以确保您的数据集具有代表性。
软件工程师设计和维护软件系统。当您是一名软件工程师时,准备好编写可伸缩、可靠和性能良好的代码。您必须将设计需求转换为文档充分、测试良好的代码,以实现产品设计师的愿景。
作为一名数据工程师,识别和解决数据质量挑战将是您的一项重要任务。您还需要支持将数据源摄取到数据存储解决方案中。数据工程师工作的一个令人兴奋的部分是获得架构和设计数据工程解决方案的机会。您还应该准备好构建ETL管道,以提取、转换数据并将其加载到数据仓库中,以便进行下游报告。数据工程师还负责数据复制、提取、加载、清理和整理。
数据架构师主要负责设计和维护数据管道。数据架构师工作的另一个重要部分是管理数据库。作为一名数据架构师,您将编写高效的查询并优化现有的查询,以最大限度地提高可伸缩性和成本效率。您还将把数据转换为可操作的报告、自动化和洞察力。
统计学家了解业务需求,开发假设,并构建统计上合理的实验。作为一名统计学家,你将验证其他商业集团实验计划的统计有效性。您还需要指导和培训项目或研究主管,以开发统计上合理的实验和验证策略或指标。
除了实验之外,统计学家还要制定和执行分析性报告策略。你可能需要像一个统计啦啦队长,因为一些数据科学公司有他们的统计人员积极推广统计方法,并发现新的业务领域,这些领域可以从统计合理的分析中受益。
商业智能分析师是数据科学中较为温和的一面。作为商业智能分析师,您需要收集业务和功能需求,并努力使技术解决方案与业务策略保持一致。您还将创建或发现数据采购和处理策略。
您将负责提取和操作大量数据,并从中创建分析报告。商业智能分析员还向关键利益相关者报告、呈现和交流分析结果。
市场营销学家向当前和潜在的客户提出想法和发现。他们还将数据挖掘和分析策略应用于数据,如人口统计或营销数据。根据Stone Alliance Group对营销科学家的描述,你必须“跟踪和评估客户获取努力、市场趋势和客户行为”。营销科学家是专门从事广告、营销或用户/客户人口统计数据的数据科学家。
根据MaxisIT Inc.的要求,业务分析师“分析业务和用户需求,记录需求,并设计系统和报告的功能规范”。如果您是业务分析师或想成为业务分析师,您需要理解业务和行业需求,并使用它们来制定系统范围和技术目标。您还将负责定义不同系统和数据库之间的数据交互。
定量分析师使用大型数据集开发复杂的模型,以提供内部报告和产生业务洞察力。资源开发协会让他们的量化分析师“开发和领导分析计划的实施,概述研究方法、问题、抽样和迭代计划”。量化分析师还自动化工作流并验证数据完整性。
作为一名数据科学家,您将被期望从多个源提取、聚合、清理和转换数据。您将需要确定问题的重要上下文因素。数据科学家分析数据,为业务提供关键的、可操作的见解,以提高性能。根据公司的不同,您可能需要预测市场趋势,以帮助公司战略性地发展其分支机构。
数据科学是关于在短期分析指导和长期预测和实验之间找到平衡。你需要在正确的时间传达重要的事情,所以你可以用易于理解的媒体--数据可视化和引人入胜的、深思熟虑的演示--来展示发现是至关重要的。
作为一名数据科学家,您将从数据中为非技术利益相关者带来价值和洞察力。您将有机会积极主动地在公司内部找到可以从数据驱动决策中受益的领域,并与其他团队合作来实现这一目标。
为生产建立机器学习模型是机器学习工程师的主要关注点。他们设计和实现可伸缩、可靠、性能良好的数据管道和服务。根据公司及其关注领域的不同,您可以通过将机器学习模型应用于历史数据和动态数据来改进产品的个性化或更好地预测行业的市场趋势。
所有这些角色之间有很多交叉。一些人更关注于纯粹的数字处理,而另一些人则更关注于将数据分析产生的洞察力应用于业务决策。不管你的确切职位是什么,如果你在数据科学领域,你将被期望参与数据驱动的产品开发周期中的许多不同步骤。您应该准备好发现要优化的新领域,找出重要的度量标准,找到数据来通知这些度量标准,设计和执行实验,并以简洁、准确和令人信服的方式呈现实验/模型的结果。
数据科学领域很年轻,定义也很松散。很多时候,您会发现在数据科学的保护伞中,不同职位名称下的职位描述听起来惊人地相似。公司经常意识到他们有数据,或者可以收集数据,然后用它来改进他们的商业模式。然而,这些职位描述和他们选择分配给他们的职位头衔通常是由非技术人员撰写的,这意味着有很多重叠。
一家公司的数据工程师可能和另一家公司的数据分析师做同样的工作。所有这些职位都涉及收集或验证数据,应用某种形式的分析,然后通过报告、预测或可视化向非技术同事解释结果。
如果这些工作中的一个听起来对你来说很完美,那么你可以把搜索范围缩小到一个标题,但如果其中几个听起来很好,那么我会更灵活地使用你在搜索时使用的标题。如果这个头衔对你来说非常重要,那么当你得到工作机会时,你总是可以把它作为谈判的一部分。不要让这份责任清单把你从一份听起来很有趣的工作中吓跑。如果您真的想成为一名数据建模师,但又不习惯组织沿袭信息,您可以查看不同公司的数据建模师职位或数据架构师职位。
让这13个最常见的数据科学角色的细分成为您在数据科学领域寻找工作的跳板。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20