京公网安备 11010802034615号
经营许可证编号:京B2-20210330
三年前,我面临着一个将伴随我余生的决定--“<我>我要做什么谋生?”我刚刚完成高等教育,高中刚刚毕业。
在与朋友和家人讨论了很长时间后,我选择了“21世纪最性感的工作”。我决定攻读数据科学本科学位。
当时,我选择了数据科学,因为我不知道我的选择。我听说了一个很受欢迎的领域,它承诺灵活的工作时间和丰厚的工资支票,并决定专攻它。
然而,在数据行业工作了一年多后,我逐渐意识到数据科学只是我可以选择的众多职业道路之一。
数据行业有许多不太受欢迎的角色需求很高,薪酬也很高。
在本文中,我将描述数据行业中三个最有前途的职业选择--数据分析、数据科学和数据工程。
数据工程师是数据行业的无名英雄。他们整合了大量数据,并构建了其他数据专业人员可以轻松访问的可伸缩管道。
如果没有数据工程师所做的所有数据准备工作,数据科学家将无法建立机器学习模型。
在过去的几年里,随着公司开始意识到拥有一个可伸缩的数据框架的重要性,对数据工程师的需求有所增长。
数据工程师是这个列表中三个角色中技术含量最高的。他们设计数据库模式,管理系统中的数据流,并执行质量检查以确保数据一致。
为了成为一名数据工程师,您需要具备软件设计、数据库架构、devops和数据建模方面的技能。您还需要有一个强大的SQL命令。熟悉Python和Bash等脚本语言通常是数据工程工作描述中的一个要求。
数据分析员是组织数据以确定可以支持决策的趋势的个人。
这些人利用他们的技术和领域知识提出可以帮助企业发展的建议。
以下是一个数据分析师工作流的简单示例:
数据分析师通常执行类似于上面描述的任务。
为了识别客户价值并像上面那样对他们进行分组,分析师需要对公司提供的产品有很强的理解。他们还需要在商业和营销等领域拥有专业知识。
数据科学家的工作范围经常与数据分析师的工作范围混淆,这是因为他们的技能有很大的重叠。
然而,这些角色之间的主要区别是数据科学家建立机器学习模型,而数据分析师不。
数据科学家需要具备与分析师非常相似的技能。他们需要了解如何收集和转换数据,创建
可视化,执行分析任务,并在数据的帮助下解决业务问题。
除了上面列出的所有技能,数据科学家还需要知道如何创建预测模型。
以下是一个数据科学家工作流的示例:
数据科学极其受欢迎,围绕该领域有很多炒作。不过,数据行业还有其他职业增长迅速,在薪酬和需求方面同样看好。
数据科学家、工程师和分析师对数据生命周期同样重要。组织需要所有这些领域的专业知识,以便提出数据驱动的决策,增加业务价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24