
大数据下“需求为王”还是万能公式么
大数据, 当红炸子鸡,无论互联网公司,还是传统公司,言必谈之。因为它正悄然改变了人们的吃、穿、住、用、行,乃至生活的方方面面。
与此同时,“满足用户之所需”也成为企业的经营铁律,一时间,为各家所追捧。毕竟,在商业博弈中,满足了用户的要求就是击中了用户的痛点,这是很多企业成功的秘诀。
所以在诸多领域,“用户要什么,你就给什么”的大数据运营思路大行其道。但近日,老胡参加了财新传媒举办的一个大数据论坛,听链家网副总裁闫觅的论调,让人对这种经营铁律有了新的认知。闫觅出身百度、在业内被称之为“房产中介行业里最懂大数据的技术牛人”。
1从“母爱算法”到“父爱算法”
(闫觅讲述链家房产的“父爱算法”)
“房产行业比较特殊,其是低频率高客单价的交易,这让用户很难正确的把握预期,对心目中的房子难以准确把控。而且,由于用户对市场和房源情况不了解,容易形成对房子错误预期,数据显示多数情况用户最终成交的房子与用户最初所描绘的需求出入很大。”闫觅认为,这种情况下,“用户要什么,你就给什么”的大数据运营思路正在面临挑战。
在闫觅看来,满足“用户所要”这一定律在房产大数据是不够的,不是“用户要什么,你就给什么”,而是“当用户也不知道要什么的时候,我告诉用户什么更适合你”。而这时候,用户们就需要一种新的“父爱算法”了。
所谓的“父爱算法”就是一种大数据的方法轮,近期,由罗辑思维创办人罗振宇所提出,是相对母爱算法的一种说法。具体而言,母爱算法 = 用户要什么,你就给什么;父爱算法 = 我告诉你什么叫好,什么适合你。
此前,在商业字典中,主要流行“母爱算法”,以满足用户需求为主,但在房产领域,用户要提高交易体验,需要平台运营方来主动告诉用户什么更适合他,所以链家在房产领域践行的大数据应用逻辑正是与这种“父爱算法”的精髓一致。
具体而言,要实现这种“父爱算法”需要两步: 第一步,对用户需求的深入挖掘,建立起用户的需求画像,并在进行购房交易时,通过之前用户的相似比对,提供给用户更多选择空间。第二步,锁定了区域后,把最适合的房子匹配给用户。这种算法的前提,则是要完成大数据的原始基础积累,这是最难的,也是最核心的竞争壁垒。
自2008年起,链家就开始着手打造楼盘字典,用了8年时间,耗资近4.5亿在全国28个重点城市和地区,覆盖3亿人口的范围内,建立起一个全国最大的楼盘数据库,管理7000万房源数据。此外,链家更注重对人的大数据分析,用107个维度对用户行为进行描述,从125个维度对经纪人本身进行分析。最终形成了对房、人和交易流程的全面数据积累。
可以说,这些是链家能以大数据践行“父爱算法”的基础,别的玩家即使明白这个道理,短期内也很难做到。
2大数据3.0时代,颠覆的力量
从今天来看,链家已经不再是一个传统的房产中介,而是正逐步发展为一家名副其实的房产领域互联网化的大数据公司,并在大数据运用上加速挺进。
正是基于数据的分析和积累,链家能够践行“父爱算法”,做到更智能化的推荐,迅速对用户的真实需求做出预判,给出更合理的建议,避免在交易过程中的资源与时间的浪费,最终切实帮助用户拉近他们与未来理想家的距离。
值得关注的是,透过链家房产大数据背后,我们能看到一股颠覆的力量开始凸显。
大数据时代不止于“大”,企业对数据资产的厚度与深度的积累成为了决定大数据成败的关键。随着房、人和交易数据的不断积累以及“父爱算法”等技术的不断迭代,链家将能够为用户带来更加智能化的房屋交易体验,不仅填补了用户的需求空白,更能颠覆用户的预期。看似只是一种算法的一小步,却是房产行业的一大步。
这种论调也能找到例证,比如苹果就是创造了用户的需求,因为用户最开始也不知道自己的需求,比如Pad平板,比如触屏手机,苹果就是用产品告诉你什么叫好的选择,最终颠覆了原来的手机产品。
从另一方面来看,链家践行“父爱算法”也意味着房产大数据发展到了一个新的阶段。现实中,从2008年开始,链家就开始做互联网大数据。最开始是线上线下的简单数据的呈现、共享联动,这是原始的数据积累阶段,是大数据的1.0版本;随后到了对房产交易数据进行抓取分析,2.0后阶段;当下则是新的3.0阶段。即数据与商业深度融合,“父爱算法”下实现智能化的体验,数据分析反哺销售,产生新的增值,这就是大数据3.0时代。这将是未来大数据发展的主旋律。
不过,整体中国房地产的大数据之路,任重而道远。当前,大数据玩法在房地产行业落地少,成效不显著,所以之前万科王石直言万科人暂时不要跟他提大数据。但有一点我们必须看到,这是大势所趋,链家的做法将对整个行业产生积极的意义。
只要方向对了,怎么努力都是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26