
大数据下“需求为王”还是万能公式么
大数据, 当红炸子鸡,无论互联网公司,还是传统公司,言必谈之。因为它正悄然改变了人们的吃、穿、住、用、行,乃至生活的方方面面。
与此同时,“满足用户之所需”也成为企业的经营铁律,一时间,为各家所追捧。毕竟,在商业博弈中,满足了用户的要求就是击中了用户的痛点,这是很多企业成功的秘诀。
所以在诸多领域,“用户要什么,你就给什么”的大数据运营思路大行其道。但近日,老胡参加了财新传媒举办的一个大数据论坛,听链家网副总裁闫觅的论调,让人对这种经营铁律有了新的认知。闫觅出身百度、在业内被称之为“房产中介行业里最懂大数据的技术牛人”。
1从“母爱算法”到“父爱算法”
(闫觅讲述链家房产的“父爱算法”)
“房产行业比较特殊,其是低频率高客单价的交易,这让用户很难正确的把握预期,对心目中的房子难以准确把控。而且,由于用户对市场和房源情况不了解,容易形成对房子错误预期,数据显示多数情况用户最终成交的房子与用户最初所描绘的需求出入很大。”闫觅认为,这种情况下,“用户要什么,你就给什么”的大数据运营思路正在面临挑战。
在闫觅看来,满足“用户所要”这一定律在房产大数据是不够的,不是“用户要什么,你就给什么”,而是“当用户也不知道要什么的时候,我告诉用户什么更适合你”。而这时候,用户们就需要一种新的“父爱算法”了。
所谓的“父爱算法”就是一种大数据的方法轮,近期,由罗辑思维创办人罗振宇所提出,是相对母爱算法的一种说法。具体而言,母爱算法 = 用户要什么,你就给什么;父爱算法 = 我告诉你什么叫好,什么适合你。
此前,在商业字典中,主要流行“母爱算法”,以满足用户需求为主,但在房产领域,用户要提高交易体验,需要平台运营方来主动告诉用户什么更适合他,所以链家在房产领域践行的大数据应用逻辑正是与这种“父爱算法”的精髓一致。
具体而言,要实现这种“父爱算法”需要两步: 第一步,对用户需求的深入挖掘,建立起用户的需求画像,并在进行购房交易时,通过之前用户的相似比对,提供给用户更多选择空间。第二步,锁定了区域后,把最适合的房子匹配给用户。这种算法的前提,则是要完成大数据的原始基础积累,这是最难的,也是最核心的竞争壁垒。
自2008年起,链家就开始着手打造楼盘字典,用了8年时间,耗资近4.5亿在全国28个重点城市和地区,覆盖3亿人口的范围内,建立起一个全国最大的楼盘数据库,管理7000万房源数据。此外,链家更注重对人的大数据分析,用107个维度对用户行为进行描述,从125个维度对经纪人本身进行分析。最终形成了对房、人和交易流程的全面数据积累。
可以说,这些是链家能以大数据践行“父爱算法”的基础,别的玩家即使明白这个道理,短期内也很难做到。
2大数据3.0时代,颠覆的力量
从今天来看,链家已经不再是一个传统的房产中介,而是正逐步发展为一家名副其实的房产领域互联网化的大数据公司,并在大数据运用上加速挺进。
正是基于数据的分析和积累,链家能够践行“父爱算法”,做到更智能化的推荐,迅速对用户的真实需求做出预判,给出更合理的建议,避免在交易过程中的资源与时间的浪费,最终切实帮助用户拉近他们与未来理想家的距离。
值得关注的是,透过链家房产大数据背后,我们能看到一股颠覆的力量开始凸显。
大数据时代不止于“大”,企业对数据资产的厚度与深度的积累成为了决定大数据成败的关键。随着房、人和交易数据的不断积累以及“父爱算法”等技术的不断迭代,链家将能够为用户带来更加智能化的房屋交易体验,不仅填补了用户的需求空白,更能颠覆用户的预期。看似只是一种算法的一小步,却是房产行业的一大步。
这种论调也能找到例证,比如苹果就是创造了用户的需求,因为用户最开始也不知道自己的需求,比如Pad平板,比如触屏手机,苹果就是用产品告诉你什么叫好的选择,最终颠覆了原来的手机产品。
从另一方面来看,链家践行“父爱算法”也意味着房产大数据发展到了一个新的阶段。现实中,从2008年开始,链家就开始做互联网大数据。最开始是线上线下的简单数据的呈现、共享联动,这是原始的数据积累阶段,是大数据的1.0版本;随后到了对房产交易数据进行抓取分析,2.0后阶段;当下则是新的3.0阶段。即数据与商业深度融合,“父爱算法”下实现智能化的体验,数据分析反哺销售,产生新的增值,这就是大数据3.0时代。这将是未来大数据发展的主旋律。
不过,整体中国房地产的大数据之路,任重而道远。当前,大数据玩法在房地产行业落地少,成效不显著,所以之前万科王石直言万科人暂时不要跟他提大数据。但有一点我们必须看到,这是大势所趋,链家的做法将对整个行业产生积极的意义。
只要方向对了,怎么努力都是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18