
SPSS中因子分析的步骤是怎样的
因子分析定义
因子分析是研究从变量群中提取共性影子的统计技术,是将现实生活中多种相关和重叠的信息进行合作和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标的一种分析方法。通常是选出比原始变量个数少,能解释原来变量和综合指标的一种分析方法。通常是选出比原始变量个数筛,能解释原来变量的主要信息,以便浓缩数据的变量,即所谓的因子,可以用以解释资料的综合指标。
因子分析法的特点
1.因子变量的数量远少于原有的指标变量的数量,多音字变量的分析能减少分析中的计算工作量;
2.因子变量不是对原有便利的取舍,而是根据原始变量的信息进行重新组构,它能反映原有变量大部分的信息;
3.因子变量之间不存在线性相关关系,对变量的分析比较方便;
4.因子变量具有命名解释性,即该变量是对某些原始变量信息的综合反映。
SPSS中的因子分析步骤
因子分析过程是对一个案例进行的最简单分析,虽然不能得到较满意的结果,但通过初步分析可以对研究的问题有一个初步的认识,对进一步的数据分析有很大的帮助。这里主要介绍SPSS因子分析的3个重要步骤:
1.因子提取:通过分析原始变量之间的相互关系,从中提交较少的因子。提取方法是利用选择本数据得到因子负荷矩阵。求解因子负荷矩阵的方法有很多,如主轴因子法等。使用因子负荷矩阵求解变量相关的矩阵的特征值,根据特征值的大小确定数量。
2.因子旋转:因子分析中的一个重要目的是对原始数据进行综合评价。利用因子提取方法得到的结果虽然保证了因子之间的不相关,但因子对变量的解释能力较弱,不容易解释和命名。通过因子模型的旋转变化,使公共因子的负荷和数更接近于1或0、使得到的公共因子对变量的命名和解释更加容易。进行正交换可以保证变换后各因子仍正交,但如果经过正交交换后对公共因子仍不能解释,可以进行斜交旋转变换。
3.计算因子得分:使用因子表示原始变量,需要知道因子和原始变量之间的线性关系。计算因子得分的主要方法有回归法、巴特利特法和Anderson-Rubin法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18