
SPSS中因子分析的步骤是怎样的
因子分析定义
因子分析是研究从变量群中提取共性影子的统计技术,是将现实生活中多种相关和重叠的信息进行合作和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标的一种分析方法。通常是选出比原始变量个数少,能解释原来变量和综合指标的一种分析方法。通常是选出比原始变量个数筛,能解释原来变量的主要信息,以便浓缩数据的变量,即所谓的因子,可以用以解释资料的综合指标。
因子分析法的特点
1.因子变量的数量远少于原有的指标变量的数量,多音字变量的分析能减少分析中的计算工作量;
2.因子变量不是对原有便利的取舍,而是根据原始变量的信息进行重新组构,它能反映原有变量大部分的信息;
3.因子变量之间不存在线性相关关系,对变量的分析比较方便;
4.因子变量具有命名解释性,即该变量是对某些原始变量信息的综合反映。
SPSS中的因子分析步骤
因子分析过程是对一个案例进行的最简单分析,虽然不能得到较满意的结果,但通过初步分析可以对研究的问题有一个初步的认识,对进一步的数据分析有很大的帮助。这里主要介绍SPSS因子分析的3个重要步骤:
1.因子提取:通过分析原始变量之间的相互关系,从中提交较少的因子。提取方法是利用选择本数据得到因子负荷矩阵。求解因子负荷矩阵的方法有很多,如主轴因子法等。使用因子负荷矩阵求解变量相关的矩阵的特征值,根据特征值的大小确定数量。
2.因子旋转:因子分析中的一个重要目的是对原始数据进行综合评价。利用因子提取方法得到的结果虽然保证了因子之间的不相关,但因子对变量的解释能力较弱,不容易解释和命名。通过因子模型的旋转变化,使公共因子的负荷和数更接近于1或0、使得到的公共因子对变量的命名和解释更加容易。进行正交换可以保证变换后各因子仍正交,但如果经过正交交换后对公共因子仍不能解释,可以进行斜交旋转变换。
3.计算因子得分:使用因子表示原始变量,需要知道因子和原始变量之间的线性关系。计算因子得分的主要方法有回归法、巴特利特法和Anderson-Rubin法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26