
CDA数据分析师 出品
编辑:JYD
大家好,我是曹鑫老师,今天要给大家介绍的是ETL工程师日常工作内容。
ETL全称是Extraction-Transformation-Loading,即完成数据的抽取、转换、加载。下面通过一个简单的例子来帮助您了解ETL工程师岗位。
我们现在有企业用户的行为日志数据,业务端希望根据用户的行为数据抽取用户画像标签数据。需完成以下任务:构建数据模型、编写ETL加工程序、制定ETL程序运行计划。
ETL工程师需要负责采集数据(E)、并根据业务规则进行加工转换(T)、并最终将转换结果按照格式要求存放至指定位置(L)。
用户行为日志以文本文件形式存储,文件名的格式:用户id_日期_时间.txt,文件内容如图所示:
样本用户每次开机时,都会形成一个对应的日志文件,文件的开头2行会记录以下2个值:
接下来,数据采集程序会以2秒一次的频率扫描样本用户计算机的当前焦点窗口,若焦点窗口发生变化,则会在日志中追加一条记录。如图所示。
接下来,ETL工程师就会安装如下流程开展工作:
接下来根据数据源以及数据模型,编写ETL程序
根据1里面制定的加工逻辑编写代码处理数据,非结构化的数据一般选择python这类编程语言。结构化的数据一般采用SQL即可。
最后制定ETL脚本执行周期计划。
ETL脚本在生产环境中定期执行,更新数仓中的数据
根据样例数据,及数据模型,我们可以得到如图的数据:
需要注意的是,日志文件一般是放置在业务服务器端的,数据加载、转换后的结果一般是加载到数据仓库中。
以上就是ETL工程师岗位日常工作中的一个案例。
线下体验店预约
当下企业数字化转型正快速发展,在越来越严苛的外部监管及越来越激烈的市场竞争驱动下,各行各业都在急迫地对数据进行最大化的价值挖掘。然而,大多数企业在推动落地时,都会遇到诸多问题。快速了解“数据从治理到分析”的落地流程与产出效果,以最低成本实现团队协同,快速解决深奥数据问题,成为越来越多企业加大数字化转型投入的核心动力。
CDA数据分析师作为专注于数字化人才培养及服务的教育品牌, 一直致力于大数据在产、学、 研的融合应用。以“培养企业需要的专业数字化人才, 搭建引领数字化时代的企业人才梯队” 为使命, 为DT时代数字化人才的数据能力提升及企业数字化转型提供标准化、 高效率、 可落地的数据应用侧解决方案。成立15年来, 始终在总结凝练先进数字化商业数据策略及技术应用实践, 以实际行动提升了数字化人才的职业素养与能力水平, 以建设高质量生态圈层促进了行业的持续快速发展。
CDA数据分析师携手华矩科技,以数据治理与数据分析为特色,联合开设九宫格数据体验店北京分店并对外运营。
图-CDA&华矩联合的九宫格数据·数据治理与分析体验店
体验内容
在数据治理与分析体验店,您可以从技术、业务、管理三大方面全方位体验数据治理与分析。
而CDA数据分析师与华矩科技的强强联合,也赋予了数据治理与分析体验店更多特色体验,主要包括:
体验店的亮点优势
区别于以往很重的数据治理咨询与实施,华矩科技首创的九宫格数据体验店模式让用户可以更轻更快地了解与体验数据治理,并在体验店获得场景模拟,团队协同和报告输出。主要包括:
开放免费体验科目
新店试业期间,CDA数据分析师&九宫格·数据治理与分析体验店数个技术场景科目免费体验,从数据预处理、数据探查与诊断、数据清洗规则与标准化设计、数据集成、数据优化、数据质量监控到数据分析和数据挖掘等全流程场景,了解数据从产生到处理到应用的相关逻辑与实操路径,实现一个闭环体验并赋能个人技能习得或团队项目预演。
体验预约须知
1. 体验店开放地点
北京店:北京市海淀区高梁桥斜街59号院1号楼13层1306
广州店:广州市天河区体育东路122号羊城商贸中心西塔1010
深圳店:深圳市福田区新闻路华丰大厦303
2. 体验店开放时间
周一至周五 9:00-18:00
3. 体验预约流程
填写预约申请表单——后台审核体验资格——沟通确认体验时间地点——上门体验
4. 体验内容说明
每个场景科目均包含高级顾问辅导与自由实操环节,以确保用户了解操作方法并能自主操作获得结果。如需更多操作原理与数据治理与分析理论方法,敬请关注体验店后续推出的培训课程。
5. 温馨提示
新店开业期间针对既定科目场景开放免费体验,限时限量,请尽快预约体验。
不同科目体验涉及不同时长,敬请注意体验期间差旅住宿餐饮等费用需自理。
*该活动最终解释权归九宫格数据·数据治理与分析体验店所有。
码上预约体验,开启不一样的数据之旅
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10