
CDA数据分析师 出品
作者:曹鑫
编辑:JYD
我真遇到了上百万行的 Excel
年底到了,我想把公司历年的销售明细和指标等业务数据放在一起透视做分析,觉得这样很方便,但是无奈一张表就50多万行,好几年的数据加在一起有两三百万行,受 excel行数限制,我只能将数据按年分开,一年一张表,每张表里的表头项目都是一样的。
业务发展越来越大,数据的规模会越来越大,在初期的时候,还觉得Excel 够用了,但是当 Excel 规模的数据量不断增加,我们开始发现打开 Excel 越来越慢,操作一下 Excel 要等很久。
直接双击打开?
最简单的方法,当然是双击打开,当你双击下去,看着鼠标变成旋转的模式,你就陷入了无尽的等待,听着电脑的机声音越来越大,最后还没打开,电脑和我就都崩溃了。这完全没法开展下一步的数据分析⼯作了,怎么办?
Access
首先想到的是个比较冷门,但又没那么冷门,好像学过,但又好像没用过,好像很难,但其实也没那么难的软件:Access。
Access 导入 Excel 数据的操作很直观,打开 Access,点击「外部数据」-「新数据源」-「从文件」-「Excel」,按照指引一步步操作下去即可,而且 Access 也支持新表追加到旧表的后面,可以把几十万的表一张张拼接到一起。但估计你现在电脑里还有没有Access还不一定。
PowerBI
同样是微软出品的软件,现在更流行,你还可以选择 PowerBI 的一系列组合软件。
从Excel2010开始,微软推出了一个叫Power Query的插件,可以弥补Excel的不足,处理数据的能力边界大大提升,Excel2013也同样可以使用,现在还在用Excel2010和 2013的同学可以从微软官网下载powerquery插件使用。
而到了Excel2016,微软直接把PQ的功能嵌入进来,放在数据选项卡下。
首先我们使用Excel2016打开一个空白的Excel工作簿文件,依次点击“数据/从文件/从工作簿”,在导航器界面,左侧列出了所有工作表,我们这个不是一个个去勾选加载,如果表很多,那么勾起来太麻烦,直接选任一个表,点击“转换数据”按钮,进入Power Query管理界面即可。
都说到这份儿上了,Python 党得出来说两句了:上百万行的数据还放在excel里面?!别说处理了,你连打开有时候可能都是问题。这种情况下最根本的办法了就是存入数据库然后再处理,即使再不济也可以放入access。可能有人会说可以是使用 power query或者power pivot来处理,但是,实际情况是这么大的数据量,PowerBI也很吃力。
那用 Python 试试?
Python 读取百万行的 Excel 大概要花费5分钟(以我以前的电脑配置 16GB 内存),如果你的配置更好,当然会更快,代码也很简单,如下图:
1.导入 pandas 包, import pandas as pd ,是最常用的数据处理包。
2.使入 pd.read_excel() 读取 test4.xlsx 文件,读取 Excel 有直接写好的方法。
3.使入 df.head() 查看一下前五行。
最终花了 5 分钟,才把这份 50 万行 50 列的数据打开了。虽然比起双击打开是要快一点的(至少打开了),但是还不满足,有没有更快的方式?这时候,就要开始跳出Excel,开始思考其他一些更高效的数据格式。
更高效的数据格式
CSV 格式
CSV文件,是一种以纯文本形式存储表格数据的简单文件格式。在CSV中,每列数据由特殊分隔符分割(如逗号,分号或制表符),用 Python 来读取都非常方便,只要格式规整,用 Pandas 里面的 read_csv 可以快速读取以上格式文件,在我的电脑上,同样是 50 万行 50 列的数据,原来打开要花 5 分钟,现在只花了 5 秒钟,速度提升了60倍:
Pickle 格式
当然 Python 里面还引入了其他的格式,你可能平时接触的不多,但是效果绝对让你惊喜。比如将数据存储为 pkl 的格式,"pickling" 是将 Python 对象及其所拥有的层次结构转化为一个字节流的过程。
我们来看看读取的速度,打开速度一下子提升到500毫秒。
从5分钟,到5秒钟,到500毫秒,没有最快只有更快。
随着业务扩展,数据量一定会越来越大。你也会面临着数据量越来越大,处理的效率越来越慢的问题。我们思考问题的路径就可以从软件 Access、PowerBI,到编程语言 Python,再到文件格式 Excel、CSV、Pickle,一路解决下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10