
CDA数据分析师 出品
作者:曹鑫
编辑:JYD
我真遇到了上百万行的 Excel
年底到了,我想把公司历年的销售明细和指标等业务数据放在一起透视做分析,觉得这样很方便,但是无奈一张表就50多万行,好几年的数据加在一起有两三百万行,受 excel行数限制,我只能将数据按年分开,一年一张表,每张表里的表头项目都是一样的。
业务发展越来越大,数据的规模会越来越大,在初期的时候,还觉得Excel 够用了,但是当 Excel 规模的数据量不断增加,我们开始发现打开 Excel 越来越慢,操作一下 Excel 要等很久。
直接双击打开?
最简单的方法,当然是双击打开,当你双击下去,看着鼠标变成旋转的模式,你就陷入了无尽的等待,听着电脑的机声音越来越大,最后还没打开,电脑和我就都崩溃了。这完全没法开展下一步的数据分析⼯作了,怎么办?
Access
首先想到的是个比较冷门,但又没那么冷门,好像学过,但又好像没用过,好像很难,但其实也没那么难的软件:Access。
Access 导入 Excel 数据的操作很直观,打开 Access,点击「外部数据」-「新数据源」-「从文件」-「Excel」,按照指引一步步操作下去即可,而且 Access 也支持新表追加到旧表的后面,可以把几十万的表一张张拼接到一起。但估计你现在电脑里还有没有Access还不一定。
PowerBI
同样是微软出品的软件,现在更流行,你还可以选择 PowerBI 的一系列组合软件。
从Excel2010开始,微软推出了一个叫Power Query的插件,可以弥补Excel的不足,处理数据的能力边界大大提升,Excel2013也同样可以使用,现在还在用Excel2010和 2013的同学可以从微软官网下载powerquery插件使用。
而到了Excel2016,微软直接把PQ的功能嵌入进来,放在数据选项卡下。
首先我们使用Excel2016打开一个空白的Excel工作簿文件,依次点击“数据/从文件/从工作簿”,在导航器界面,左侧列出了所有工作表,我们这个不是一个个去勾选加载,如果表很多,那么勾起来太麻烦,直接选任一个表,点击“转换数据”按钮,进入Power Query管理界面即可。
都说到这份儿上了,Python 党得出来说两句了:上百万行的数据还放在excel里面?!别说处理了,你连打开有时候可能都是问题。这种情况下最根本的办法了就是存入数据库然后再处理,即使再不济也可以放入access。可能有人会说可以是使用 power query或者power pivot来处理,但是,实际情况是这么大的数据量,PowerBI也很吃力。
那用 Python 试试?
Python 读取百万行的 Excel 大概要花费5分钟(以我以前的电脑配置 16GB 内存),如果你的配置更好,当然会更快,代码也很简单,如下图:
1.导入 pandas 包, import pandas as pd ,是最常用的数据处理包。
2.使入 pd.read_excel() 读取 test4.xlsx 文件,读取 Excel 有直接写好的方法。
3.使入 df.head() 查看一下前五行。
最终花了 5 分钟,才把这份 50 万行 50 列的数据打开了。虽然比起双击打开是要快一点的(至少打开了),但是还不满足,有没有更快的方式?这时候,就要开始跳出Excel,开始思考其他一些更高效的数据格式。
更高效的数据格式
CSV 格式
CSV文件,是一种以纯文本形式存储表格数据的简单文件格式。在CSV中,每列数据由特殊分隔符分割(如逗号,分号或制表符),用 Python 来读取都非常方便,只要格式规整,用 Pandas 里面的 read_csv 可以快速读取以上格式文件,在我的电脑上,同样是 50 万行 50 列的数据,原来打开要花 5 分钟,现在只花了 5 秒钟,速度提升了60倍:
Pickle 格式
当然 Python 里面还引入了其他的格式,你可能平时接触的不多,但是效果绝对让你惊喜。比如将数据存储为 pkl 的格式,"pickling" 是将 Python 对象及其所拥有的层次结构转化为一个字节流的过程。
我们来看看读取的速度,打开速度一下子提升到500毫秒。
从5分钟,到5秒钟,到500毫秒,没有最快只有更快。
随着业务扩展,数据量一定会越来越大。你也会面临着数据量越来越大,处理的效率越来越慢的问题。我们思考问题的路径就可以从软件 Access、PowerBI,到编程语言 Python,再到文件格式 Excel、CSV、Pickle,一路解决下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25