京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:AI入门学习
在数据处理过程中,经常会遇到多个表进行拼接合并的需求,在Pandas中有多个拼接合并的方法,每种方法都有自己擅长的拼接方式,本文对pd.concat()进行详细讲解,希望对你有帮助。pd.concat()函数可以沿着指定的轴将多个dataframe或者series拼接到一起,这一点和另一个常用的pd.merge()函数不同,pd.merge()解决数据库样式的左右拼接,不能解决上下拼接。
pd.concat( objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
#构建需要的数据表
import pandas as pd
df1 = pd.DataFrame({'A':['A{}'.format(i) for i in range(0,4)], 'B':['B{}'.format(i) for i in range(0,4)], 'C':['C{}'.format(i) for i in range(0,4)]
})
df2 = pd.DataFrame({'A':['A{}'.format(i) for i in range(4,8)], 'B':['B{}'.format(i) for i in range(4,8)], 'C':['C{}'.format(i) for i in range(4,8)]
})
df3 = pd.DataFrame({'A':['A{}'.format(i) for i in range(8,12)], 'B':['B{}'.format(i) for i in range(8,12)], 'C':['C{}'.format(i) for i in range(8,12)]
})
现将表构成list,然后在作为concat的输入
frames = [df1, df2, df3] result = pd.concat(frames) A B C 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
传入也可以是字典
frames = {'df1':df1, 'df2':df2,'df3':df3} result = pd.concat(frames) A B C df1 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 df2 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 df3 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11 三、横向拼接
当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并
#再构建一个表
df4 = pd.DataFrame({'C':['C{}'.format(i) for i in range(3,9)], 'E':['E{}'.format(i) for i in range(3,9)], 'F':['F{}'.format(i) for i in range(3,9)]
})
pd.concat([df1,df4], axis=1)
A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8
加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。
# join='inner' 取交集 pd.concat([df1, df4], axis=1, join='inner') A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 # join='outer' 和 默认值相同 pd.concat([df1, df4], axis=1, join='outer') A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8 四、对比append方法
append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)
df1.append(df2) A B C 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 五、忽略index
如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
pd.concat([df1, df4], axis=1, ignore_index=True) 0 1 2 3 4 5 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8 六、增加区分组键
前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源
pd.concat([df1,df2,df3], keys=['x', 'y', 'z']) A B C x 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 y 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 z 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
frames = {'df1':df1, 'df2':df2,'df3':df3} result = pd.concat(frames) A B C df1 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 df2 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 df3 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
七、加入新的行
append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。
s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])
df1.append(s2, ignore_index=True)
A B C D 0 A0 B0 C0 NaN 1 A1 B1 C1 NaN 2 A2 B2 C2 NaN 3 A3 B3 C3 NaN 4 X0 X1 X2 X3
如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。
dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4}, {'A': 5, 'B': 6, 'C': 7, 'Y': 8}] df1.append(dicts, ignore_index=True) A B C X Y 0 A0 B0 C0 NaN NaN 1 A1 B1 C1 NaN NaN 2 A2 B2 C2 NaN NaN 3 A3 B3 C3 NaN NaN 4 1 2 3 4.0 NaN 5 5 6 7 NaN 8.0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12