
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣,今天给大家介绍3个特别好用的Python模块,知道的人可能不多,但是特别的好用。
Python当中的Psutil模块是个跨平台库,它能够轻松获取系统运行的进程和系统利用率,包括CPU、内存、磁盘、网络等信息,它的安装也非常的简单,命令行
pip install psutil
这里因为整体的篇幅有限,小编就暂时只罗列几个常用的方法,例如我们想要查看一下CPU的利用率
psutil.cpu_percent()
返回的结果表示的是当前系统范围的CPU利用率百分比,如果我们要查看系统中CPU的个数,代码如下
## 逻辑CPU的个数 psutil.cpu_count() ## 物理CPU的个数 psutil.cpu_count(logical=False)
又或者我们想要查看一下系统中的物理内存,代码如下
## 剩余的物理内存 free = str(round(psutil.virtual_memory().free / (1024.0 * 1024.0 * 1024.0), 2)) ## 物理内存总共有 total = str(round(psutil.virtual_memory().total / (1024.0 * 1024.0 * 1024.0), 2))
而如果我们想要查看单个磁盘的信息,就直接调用disk_usage()方法
print(psutil.disk_usage('C:'))
而去获取所有磁盘的信息,调用的则是disk_partitions()方法
print(psutil.disk_partitions())
另外我们也还能够获取到系统的启动时间
from datetime import datetime
print(u"系统启动时间: %s" % datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S"))
一般我们都是用datatime模块来处理日期、时间等数据,但是不得不说在于datatime模块也有自身的一些限制,例如在处理时区时就会显得有些不足,这次我们来介绍一下Pendulum模块
首先我们用pip命令行来进行安装
pip install pendulum
pendulum模块最令人印象深刻的功能是时区,例如我们想要知道“巴黎”此时的时间,可以这么来做
now_in_paris = pendulum.now('Europe/Paris') print(now_in_paris)
output
2022-01-22T14:59:06.484816+01:00
还可以知道当天的日期
d1 = pendulum.yesterday() # 昨天 d2 = pendulum.today() # 今天 d3 = pendulum.tomorrow() # 明天
output
2022-01-21T00:00:00+08:00 # 昨天的日期
2022-01-22T00:00:00+08:00 # 今天
2022-01-23T00:00:00+08:00 # 明天
我们还可以在时间的数据上进行加、减,调用的是add和subtract方法
dt = pendulum.datetime(2022, 1, 22) dt_years_add = dt.add(years=5) print(dt_years_add) dt_years_subtract = dt.subtract(years=1) print(dt_years_subtract) dt_month_add = dt.add(months=60) print(dt_month_add) dt_month_subtract = dt.subtract(months=60) print(dt_month_subtract)
output
2027-01-22T00:00:00+00:00 2021-01-22T00:00:00+00:00 2027-01-22T00:00:00+00:00 2017-01-22T00:00:00+00:00
要是我们希望将时间数据转换成字符串,就可以这么来做,代码如下
dt = pendulum.datetime(2022, 1, 23, 15, 16, 10)
要是我们需要的是前缀的日期字符串,则可以这么来做
dt.to_date_string()
output
2022-01-23
而要是我们需要的是后缀的时间字符串,则可以这么来做
dt.to_time_string()
output
15:16:10
当然我们有时候日期和时间都需要,代码如下
dt.to_datetime_string()
output
2022-01-23 15:16:10
或者是
dt.to_day_datetime_string()
output
Sun, Jan 23, 2022 3:16 PM
当然该模块还有其他很多强大的功能,具体的大家可以去看它的文档,最后我们要说的是其人性化时间的输出功能。
如果我们平时用搜素引擎的话,就会看到有很多内容的时间被标成了“1天前”、“1周后”等等,这个在pendulum模块当中也能够轻而易举的实现
print(pendulum.now().subtract(days=1).diff_for_humans()) ## '1 day ago' print(pendulum.now().diff_for_humans(pendulum.now().subtract(years=1))) ## '1 year after' print(pendulum.now().subtract(days=24).diff_for_humans()) ## '3 weeks ago'
可能有些人要是英文看不懂的话,我们也可以切换到中文,如下
print(pendulum.now().subtract(days=14).diff_for_humans()) ## '2周前' print(pendulum.now().add(seconds=5).diff_for_humans()) ## '5秒钟后'
pyfiglet是一个专门用来生成艺术字的模块,并且支持有多种艺术字的字体,我们来看一下下面这个例子
result = pyfiglet.figlet_format("Python", font="larry3d") print(result)
output
____ __ __
/ _` / __/
L __ __ ,_ ___ ___ ___
,__/ / / _ ` / __` /' _ ` / _ _ / L / / _ /`____ __ _ _ ____/ _ _ /_/ `/___/> /__/ /_//_//___/ /_//_/ /___/ /__/
要是大家不喜欢上面的字体,可以通过下面的代码
pyfiglet.FigletFont.getFonts()
在输出的所有字体当中任选一个来进行艺术字的塑造
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14