
CDA数据分析师 出品
编辑:JYD
对于很多初入数据分析领域的小白来说,往往都会陷入迷茫。数据分析的坑很大,一旦走上这条路,就要明确基本方向,不然只会越走越偏,最后耗费力气,毫无收获。
比如你想要成为一名数据分析师,你就可以到招聘网站看看,对应岗位的需求是什么?这样你就会对需要掌握的岗位技能架构有了初步认识。
数据分析领域对应的岗位非常多,经常把同学们绕晕。比如:数据分析、商业分析、运营分析、产品分析、销售分析、数据挖掘、算法模型等等。
如何区别这些让人眼花缭乱的概念,今天系统讲解一下。
数据分析师根据自己的工作岗位、行业、工作内容等等,可以分成非常多的种类。
但总体可以区分成两个方向,即业务方向和技术方向。当然,在业务和技能上两类也是需要相互结合的。
其中,想要短时间内快速成为技术方向的数据分析师,是非常很难的。一定要底子深基础牢,编程语言基础、统计学知识、算法、数据结构样样不能少,甚至得精通,而这些不是我们自习两三个月就能完全掌握的。
而业务方向的数据分析师,在目前的招聘市场上需求岗位最多。这种岗位的进入门槛会相对较低一点,所以对于0基础想转行的同学,自然业务型数据分析师会更适合。但如果入职后不能尽快掌握业务,提升自己的数据思维能力,就很有可能就变成“只会提数的表哥表姐”。
所以,想快速成为一名数据分析师,又不想入职后沦为“打杂”人员。就应该知道自己应该持续学习并掌握的各项技能,以及自己进入数据分析行业后的发展路径。
我分析了招聘网站上多个与数据分析的相关岗位,根据薪资高低大概分为三个等级。
各阶段数据分析师的差异体现在三个方面:业务技能、执行管理能力、业内影响力。
后两者能力属于软实力,需要在工作中逐渐掌握。作为初学者,第一步最需要的是掌握业务技能,最好能了解完整的学习路线。
初级水平:
掌握常见表格制作和数据库基本功能操作,就可以做业务数据分析师。
中级水平:
在初级水平基础上,对常见函数应用熟练,数据库操作熟练,掌握ETL能力,掌握统计分析模型,具备行业相关业务经验,可以进行简单的建模操作,就可以做策略数据分析师。
高级水平:
具备数据科学家能力,机器学习、深度学习算法能力、建模挖掘能力和建模挖掘能力突出,对行业业务逻辑深度认知,就可以做算法工程师、挖掘工程师。
所以我们该如何具备这些能力呢?
学习统计学
首先需要学习统计学。统计学部分主要分为三大模块。
第一个模块就是描述性统计。
可以帮助我们在拿到一个数据集的时候进行初步的统计分析。描述性统计当中需要掌握的概念有,比如集中趋势、离散趋势、数据分布、缺失值和异常值等等。
第二个模块是参数估计和假设检验。
这里需要掌握的大约有,比如点估计方法、置信度、置信区间、原假设、备择假设、P值、检验统计量等。
第三个模块是统计模型。
在这个模块当中,主要要掌握的包括卡方分析、方差分析、主成分分析、因子分析,以及统计模型的圆点:回归分析。
学习分析工具
首先需要学习统计学。统计学部分主要分为三大模块。
在学习完统计学之后,就要开始代码及编程部分,进入分析工具的学习了。
之前我们讲过入门数据分析必学的4大工具,这期我们直接来讲利用这些工具的要学会那些技能。
在Excel中我们主要需要掌握一些基本的计算函数、数据透视表以及VLOOKUP函数。
在SQL中我们主要掌握表的增、删、改、查、表连接、子查询以及窗口函数的运用和SQL语句的执行顺序。
在Python中,我们要掌握最基本的数据结构,包括列表、字典、字符串、元祖、数组、集合。还需要掌握基本的语句,比如说IF语句、For循环、while 循环。还要熟练运用Python中的各种库,比如有numpy/pandas等等。
最后还有数据可视化的分析工具BI。大家需要学习的包括仪表盘的制作,一些基本的计算函数的运用。
算法模型和机器学习
学习完工具后我们就要开始算法模型以及相关机器学习的部分知识了。
大家主要掌握的就是模型的原理、模型的运用,模型的调优以及效果的评估。机器学习部分主要可以分为:有监督学习以及无监督学习。在有监督学习中,主要可以分为回归算法与分类算法。而在无监督学习中,我们主要需要掌握的就是聚类算法和降维算法。
掌握业务知识
最后就是业务知识模块。
数据分析师必须要掌握一些行之有效的的数据分析方法,并能灵活的与自身实际工作相结合。数据分析师常用的数据分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
如果你也想快速成为一名数据分析师,欢迎咨询我们。顺便给大家提供了一份数据分析学习资料,欢迎扫码领取学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11