
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,作业内容包括采集网易云音乐热评评论内容,数据量1W作业足够,然后就是做点数据分析相关的工作即可。这份大作业里边有网络爬虫,有数据分析和数据处理,还有可视化,算是一个大实验了,还需要上交实验报告。
首先是数据来源,来自网易云音乐热评,代码这里就不放出来了,调用了API获取的,抓取难度就少了许多,这里不在赘述了。
时间处理
下面的代码主要是评论时间分布,主要是针对时间列做了数据处理,常规操作,你也对照的去以日期和月份去挖掘下有意思的事情。
import pandas as pd from pyecharts import Line # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 获取时间 df['time'] = [int(i.split(' ')[1].split(':')[0]) for i in df['date']] # 分组汇总 date_message = df.groupby(['time'])
date_com = date_message['time'].agg(['count'])
date_com.reset_index(inplace=True) # 绘制走势图 attr = date_com['time']
v1 = date_com['count']
line = Line("歌曲被爆抄袭后-评论的时间分布", title_pos='center', title_top='18', width=800, height=400)
line.add("", attr, v1, is_smooth=True, is_fill=True, area_color="#000", is_xaxislabel_align=True, xaxis_min="dataMin", area_opacity=0.3, mark_point=["max"], mark_point_symbol="pin", mark_point_symbolsize=55)
line.render("歌曲被爆抄袭后-评论的时间分布.html")
运行之后,得到的效果图如下所示:
可以看到评论的小伙伴喜欢在下午临近下班和晚上的时候进行评论。
代码和上面差不多,只需要更改下数据即可。
import pandas as pd # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 分组汇总 user_message = df.groupby(['userid'])
user_com = user_message['userid'].agg(['count'])
user_com.reset_index(inplace=True)
user_com_last = user_com.sort_values('count', ascending=False)[0:10]
print(user_com_last)
运行之后,得到的结果如下所示:
可以看到有忠粉,狂粉,评论数据上百,恐怖如斯。
词云这个老生常谈了,经常做,直接套用模板,改下底图即可,代码如下:
from wordcloud import WordCloud import matplotlib.pyplot as plt import pandas as pd import random import jieba # 设置文本随机颜色 def random_color_func(word=None, font_size=None, position=None, orientation=None, font_path=None, random_state=None): h, s, l = random.choice([(188, 72, 53), (253, 63, 56), (12, 78, 69)]) return "hsl({}, {}%, {}%)".format(h, s, l) # 读取信息 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna()
words = pd.read_csv('chineseStopWords.txt', encoding='gbk', sep='t', names=['stopword']) # 分词 text = '' for line in df['comment']:
text += ' '.join(jieba.cut(str(line), cut_all=False)) # 停用词 stopwords = set('')
stopwords.update(words['stopword'])
backgroud_Image = plt.imread('music.jpg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='FZSTK.TTF',
max_words=2000,
max_font_size=250,
min_font_size=15,
color_func=random_color_func,
prefer_horizontal=1,
random_state=50,
stopwords=stopwords
)
wc.generate_from_text(text) # img_colors = ImageColorGenerator(backgroud_Image) # 看看词频高的有哪些 process_word = WordCloud.process_text(wc, text)
sort = sorted(process_word.items(), key=lambda e: e[1], reverse=True)
print(sort[:50])
plt.imshow(wc)
plt.axis('off')
wc.to_file("网易云音乐评论词云.jpg")
print('生成词云成功!')
最后生成的词云图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
感觉还是年轻的粉丝居多啊!
这个代码稍微复杂一些了,毕竟涉及到地图,代码如下:
import pandas as pd from pyecharts import Map def city_group(cityCode): """
城市编码
""" city_map = { '11': '北京', '12': '天津', '31': '上海', '50': '重庆', '5e': '重庆', '81': '香港', '82': '澳门', '13': '河北', '14': '山西', '15': '内蒙古', '21': '辽宁', '22': '吉林', '23': '黑龙江', '32': '江苏', '33': '浙江', '34': '安徽', '35': '福建', '36': '江西', '37': '山东', '41': '河南', '42': '湖北', '43': '湖南', '44': '广东', '45': '广西', '46': '海南', '51': '四川', '52': '贵州', '53': '云南', '54': '西藏', '61': '陕西', '62': '甘肃', '63': '青海', '64': '宁夏', '65': '新疆', '71': '台湾', '10': '其他',
}
cityCode = str(cityCode) return city_map[cityCode[:2]] # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 进行省份匹配 df['location'] = df['city'].apply(city_group) # 分组汇总 loc_message = df.groupby(['location'])
loc_com = loc_message['location'].agg(['count'])
loc_com.reset_index(inplace=True) # 绘制地图 value = [i for i in loc_com['count']]
attr = [i for i in loc_com['location']]
print(value)
print(attr)
map = Map("歌曲被爆抄袭后评论用户的地区分布图", title_pos='center', title_top=0)
map.add("", attr, value, maptype="china", is_visualmap=True, visual_text_color="#000", is_map_symbol_show=False, visual_range=[0, 60])
map.render('歌曲被爆抄袭后评论用户的地区分布图.html')
最后得到的效果图如下所示:
可以看到四川、广东省的评论数量居多。
代码和上面的差不多,这里不再赘述,直接上效果图了。
可以看到女粉丝占据了大头。
大家好,我是Python进阶者。这篇文章主要基于网易云热评数据,利用了Python中的数据处理库pandas进行数据处理和分析,并利用可视化库pyecharts给大家分享了相关图形的制作方法,并发现了一些有趣的数据分析结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11