京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:某某白米饭
来源:Python 技术
在写算法的时候,总是要每行每个变量一个个的 debug,有时候还要多写几个 print,一道算法题要花好长时间才能理解。pysnooper 模块可以把在运行中变量值都给打印出来。
pip3 install pysnooper
下面是道简单的力扣算法题作为一个简单的例子
import pysnooper
@pysnooper.snoop()
def longestCommonPrefix(strs):
res = ''
for i in zip(*strs):
print(i)
if len(set(i)) == 1:
res += i[0]
else
break
return res
if __name__ == 'main':
longestCommonPrefix(["flower","flow","flight"])
结果:
3:38:25.863579 call 4 def longestCommonPrefix(strs):
23:38:25.864474 line 5 res = ''
New var:....... res = ''
23:38:25.864474 line 6 for i in zip(*strs):
New var:....... i = ('f', 'f', 'f')
23:38:25.865479 line 7 print(i)
('f', 'f', 'f')
23:38:25.866471 line 8 if len(set(i))==1:
23:38:25.866471 line 9 res+=i[0]
Modified var:.. res = 'f'
23:38:25.866471 line 6 for i in zip(*strs):
Modified var:.. i = ('l', 'l', 'l')
23:38:25.866471 line 7 print(i)
('l', 'l', 'l')
23:38:25.867468 line 8 if len(set(i))==1:
23:38:25.867468 line 9 res+=i[0]
Modified var:.. res = 'fl'
23:38:25.868476 line 6 for i in zip(*strs):
Modified var:.. i = ('o', 'o', 'i')
23:38:25.868476 line 7 print(i)
('o', 'o', 'i')
23:38:25.869463 line 8 if len(set(i))==1:
23:38:25.869463 line 11 break
23:38:25.869463 line 12 return res
23:38:25.869463 return 12 return res
Return value:.. 'fl'
Elapsed time: 00:00:00.008201
我们可以看到 pysnooper 把整个执行程序都记录了下来,其中包括行号, 行内容,变量的结果等情况,我们很容易的就看懂了这个算法的真实情况。并且不需要再使用 debug 和 print 调试代码。很是省时省力,只需要在方法上面加一行 @pysnooper.snoop()。
pysnooper 包含了多个参数,一起来看看吧
output 默认输出到控制台,设置后输出到文件,在服务器中运行的时候,特定的时间出现代码问题就很容易定位错误了,不然容易抓瞎。小编在实际中已经被这种问题困扰了好几次,每次都掉好多头发。
@pysnooper.snoop('D:pysnooper.log')
def longestCommonPrefix(strs):
示例结果:
watch 用来设置跟踪的非局部变量,watch_explode 表示设置的变量都不监控,只监控没设置的变量,正好和 watch 相反。
index = 1
@pysnooper.snoop(watch=('index'))
def longestCommonPrefix(strs):
示例结果
没有加 watch 参数
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:12:33.715367 call 5 def longestCommonPrefix(strs): 00:12:33.717324 line 7 res = '' New var:....... res = ''
加了watch 参数,就会有一个 Starting var:.. index
Starting var:.. strs = ['flower', 'flow', 'flight'] Starting var:.. index = 1 00:10:35.151036 call 5 def longestCommonPrefix(strs): 00:10:35.151288 line 7 res = '' New var:....... res = ''
depth 监控函数的深度
@pysnooper.snoop(depth=2)
def longestCommonPrefix(strs):
otherMethod()
示例结果
Starting var:.. strs = ['flower', 'flow', 'flight']
00:20:54.059803 call 5 def longestCommonPrefix(strs):
00:20:54.059803 line 6 otherMethod()
00:20:54.060785 call 16 def otherMethod():
00:20:54.060785 line 17 x = 1
New var:....... x = 1
00:20:54.060785 line 18 x = x + 1
Modified var:.. x = 2
00:20:54.060785 return 18 x = x + 1
Return value:.. None
00:20:54.061782 line 7 res = ''
监控的结果显示,当监控到调用的函数的时候,记录上会加上缩进,并将它的局部变量和返回值打印处理。
prefix 输出内容的前缀
@pysnooper.snoop(prefix='-------------') def longestCommonPrefix(strs):
示例结果
-------------Starting var:.. strs = ['flower', 'flow', 'flight'] -------------00:39:13.986741 call 5 def longestCommonPrefix(strs): -------------00:39:13.987218 line 6 res = ''
relative_time 代码运行的时间
@pysnooper.snoop(relative_time=True) def longestCommonPrefix(strs):
示例结果
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:00:00.000000 call 5 def longestCommonPrefix(strs): 00:00:00.001998 line 6 res = '' New var:....... res = '' 00:00:00.001998 line 7 for i in zip(*strs):
max_variable_length 输出的变量和异常的最大长度,默认是 100 个字符,超过 100 个字符就会被截断,可以设置为 max_variable_length=None 不截断输出
@pysnooper.snoop(max_variable_length=5) def longestCommonPrefix(strs):
示例结果
Starting var:.. strs = [...] 00:56:44.343639 call 5 def longestCommonPrefix(strs): 00:56:44.344696 line 6 res = '' New var:....... res = '' 00:56:44.344696 line 7 for i in zip(*strs): New var:....... i = (...)
本文介绍了怎么使用 pysnooper 工具,pysnooper 不仅可以少一些 debug 和 print,更能帮助理解算法题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27