京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天和大家来分享一些数据可视化方向的干货,我们来尝试用Python来绘制一下“漏斗图”,但愿大家在看完本篇文章之后会有所收获。
漏斗图常用于用户行为的转化率分析,例如通过漏斗图来分析用户购买流程中各个环节的转化率。当然在整个分析过程当中,我们会把流程优化前后的漏斗图放在一起,进行比较分析,得出相关的结论,今天小编就用“matplotlib”、“plotly”以及“pyecharts”这几个模块来为大家演示一下怎么画出好看的漏斗图
首先我们先要导入需要用到的模块以及数据,
import matplotlib.pyplot as plt import pandas as pd
df = pd.DataFrame({"环节": ["环节一", "环节二", "环节三", "环节四", "环节五"], "人数": [1000, 600, 400, 250, 100], "总体转化率": [1.00, 0.60, 0.40, 0.25, 0.1]})
需要用到的数据如下图所示
用matplotlib来制作漏斗图,制作出来的效果可能会稍显简单与粗糙,制作的原理也比较简单,先绘制出水平方向的直方图,然后利用plot.barh()当中的“left”参数将直方图向左移,便能出来类似于漏斗图的模样
y = [5,4,3,2,1] x = [85,75,58,43,23] x_max = 100 x_min = 0 for idx, val in enumerate(x): plt.barh(y[idx], x[idx], left = idx+5) plt.xlim(x_min, x_max)
而要绘制出我们想要的想要的漏斗图的模样,代码示例如下
from matplotlib import font_manager as fm # funnel chart y = [5,4,3,2,1]
labels = df["环节"].tolist()
x = df["人数"].tolist()
x_range = 100
font = fm.FontProperties(fname="KAITI.ttf")
fig, ax = plt.subplots(1, figsize=(12,6)) for idx, val in enumerate(x):
left = (x_range - val)/2 plt.barh(y[idx], x[idx], left = left, color='#808B96', height=.8, edgecolor='black') # label plt.text(50, y[idx]+0.1, labels[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') # value plt.text(50, y[idx]-0.3, x[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') if idx != len(x)-1:
next_left = (x_range - x[idx+1])/2 shadow_x = [left, next_left, 100-next_left, 100-left, left]
shadow_y = [y[idx]-0.4, y[idx+1]+0.4,
y[idx+1]+0.4, y[idx]-0.4, y[idx]-0.4]
plt.plot(shadow_x, shadow_y)
plt.xlim(x_min, x_max)
plt.axis('off')
plt.title('每个环节的流失率', fontproperties=font, loc='center', fontsize=24, color='#2A2A2A')
plt.show()
绘制出来的漏斗图如下图所示
当然我们用plotly来绘制的话则会更加的简单一些,代码示例如下
import plotly.express as px data = dict(values=[80,73,58,42,23],
labels=['环节一', '环节二', '环节三', '环节四', '环节五'])
fig = px.funnel(data, y='labels', x='values')
fig.show()
最后我们用pyecharts模块来绘制一下,当中有专门用来绘制“漏斗图”的方法,我们只需要调用即可
from pyecharts.charts import Funnel
from pyecharts import options as opts
from pyecharts.globals import ThemeType c = ( Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "环节",
df[["环节","总体转化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗图", pos_bottom = "90%", pos_left = "center"))
) c.render_notebook()
我们将数据标注上去之后
c = (
Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "商品",
df[["环节","总体转化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗图", pos_bottom = "90%", pos_left = "center"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c}"))
)
c.render_notebook()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12