
SPSS详细操作:多个独立样本列联表的卡方检验
上一期我们聊到了独立样本四格表的卡方检验,实际上临床也经常会遇到分组超过2个的计数资料,这一期我们来一起搞定多个独立样本列联表的χ2检验。
一、问题与数据
以下是胃癌真菌病因研究中3种食物样品的真菌检出率,比较3个检出率有无差异。
表1 物种食物样品的真菌检出率
二、对数据结构的分析
本例是独立四格表χ2检验的拓展,由两个分组增加到多个分组,分析思路与四格表χ2检验类同,需要注意的是,这里我们不光想知道多个分组间有无差异,如果差异存在统计学意义,那么具体到组间两两比较是否均存在差异。
三、SPSS分析方法
多个独立样本列联表χ2检验的SPSS操作与四格表一样,这里不再赘述(忘记的小伙伴赶快戳SPSS详细操作:独立样本四格表的χ2检验,复习一下)。需要注意的是,不同于四格表χ2检验,SPSS对于R*C列联表χ2检验不会自动输出Fisher确切概率检验结果,如果样本例数较少,建议在Exact设置中勾选Exact(如下图)。
四、结果解读
表2 统计汇总
表3 卡方检验结果
多个独立样本列联表χ2检验的结果选择:
1、所有理论频数≥5,看Pearson Chi-Square的结果;
2、超过20%的理论频数<5或至少1个理论频数<1,看Fisher’s Exact Test结果(也可以考虑增加样本量或者依据专业判断适当合并行或列,再进行χ2检验)。
本例中SPSS提示没有理论频数小于5,且最小的理论频数为8.00,故直接选择Pearson Chi-Square结果,即χ2=22.841,P<0.001,提示三种食物中真菌检出率不同。
五、组间的两两比较
通过上述χ2检验,明确了三种食物的真菌检出率并不相同,此时我们还需要进一步考虑三种食物真菌检出率到底谁与谁之间的差异存在统计学意义,这里就需要用到“卡方分割”,通俗讲就是把R*C列联表拆分成若干个四个表分别进行χ2检验,进而判断不同组两两比较差异是否用统计学意义,但是,因为多组比较可能会增加犯I类错误概率,所以还需要对χ2检验的P值进行校正,这里主要介绍 Bonferroni校正。
本例中需要进行3次两两比较,校正的检验水准α=0.05/比较次数=0.05/3=0.0167。
到这里,有的小伙伴要问了,SPSS数据库中原来有3组,怎么才能方便地构造任意两组的“四格表”,进行χ2检验呢?这里教大家一个SPSS中比较实用的小技巧——选择特定对象进行统计分析。
A、菜单的Data中找到Select Cases
B、Select Cases中提供了多种用于选择研究对象的方式 ,这里我们将用到条件筛选(如下图)
C、条件筛选中提供了丰富的筛选公式,假如想选择1-大米和2-地瓜粉,可以做如下图设置,“食物=1|食物=2”,这里“|”代表“或者”,即数据库只要有1或者2都会被选中进行统计分析→Continue。
按照上面介绍的小技巧,我们就可以进行任意两组的四格表χ2检验(表4)
表4. 不同食物真菌检出率比较
如上表,按照校正的检验水准α=0.0167,大米和地瓜粉,大米和豆酱之间的真菌检出率差异具有统计学意义,而地瓜粉和豆酱之间差异无统计学意义。
六、撰写结论
大米、地瓜粉和豆酱的真菌检出率并不相同(χ2=22.841,P<0.001),其中地瓜粉最高为96.7%,其次为豆酱为80.0%,大米最低为43.3%。大米的真菌检出率分别与地瓜粉和豆酱相比差异均有统计学意义(Bonferroni校正,P<0.0167),而地瓜粉和豆酱之间真菌检查率差异无统计学意义(Bonferroni校正,P>0.0167)。
PS: 多个独立样本的χ2检验除了包含上述R*2列联表卡方检验外,还包含R*C卡方检验,即我们考虑的指标变量为多分类(例如血型),其统计分析思路和SPSS操作分析与R*2列联表卡方检验一致,这里不再赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26