
CDA数据分析师 出品
作者:曹鑫
我知道,一说到数字经济,数字化转型,数字化人才,你第一感觉就是:跟我有半毛钱关系。诶,不要着急!
至少 Excel 你天天在用吧?只不过你可能用的最多的就是复制粘贴记录一下数据。你不要怀疑,这高低、左右,都算是数字化技能!因为数字化技能的核心就是数据能力,而且数据能力贯穿着公司业务全流程的每个环节,这也是为什么说,数字经济时代的新生产资料是数据!看看这张数据能力图,分成四个层面:需求层、数据层、分析层、输出层;第一层是需求层,是目标确定的过程,对整个业务进行拆解,为数据工作指明方向;第二层是数据层,包含数据获取、数据清洗、数据整;第三层是分析层,包含描述性统计制图、业务根因分析,这里就涉及到专业的算法;第四层是输出层,面向管理层、决策层、执行层,给出不同的数据报告、业务仪表盘、落地模型等。
今天遇到一个任务是「财务对账」。
对账,可以说是财务最常做的一个工作,也是基础工作之一。就算你们公司的系统已经非常完整了,你还是会遇到两个表要核对差异在哪里的情况。你会怎么做?
当数据量不大的时候,我们最简单的做法,也是最符合第一直觉的做法,把两张表放到一起,一左一右,左边有个268,右边有个268,这就对上了;左边有个20.1,右边没找到20.1,这就是多记了,但是右边有个21,所以也有可能是错记了;左边有个100,右边也有个100,左边还有个100,右边没有100了,那这里可能是多记了。剩下右边还有个8,那这就是左边漏记了,这样就把不同情况都分析出来了。
但如果数据量大了,几百上千行,甚至几万行,这个方法就有点累了,比如我们现在有的两张数据表,一份公司银行存款明细账和一份银行流水,我们需要将公司银行存款明细中的借方与银行流水的收款金额进行核对。别说几百上千行了,光看这个100多行,我就觉得看着累。
如果用 Python 来做,效率就会大大提升。我们先看看Python实现的逻辑,还是之前的例子:我们要看数据有没有重复,就是统计每个数据在两个表分别出现的次数,然后两个表中的个数相减。
知道了逻辑,我们就可以来操作了。先看看效果,就是这30多行代码,作为新人,你别怕,我们先看看有多爽!
import pandas as pd
# 读取公司明细账
df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)
# 读取银行流水
df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)
df_gs_jie = df_gs[['凭证号','借方']] df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})
df_yh_shou = df_yh[['收款金额','对方户名']] df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})
# 将两张表的借方-收款拼接
mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)
mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0]
df_count = mergedStuff_jie_shou.groupby(by='金额').count()
# 判断金额出现的次数
df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']
# 重复次数不为0,就是没有对上
df_result = df_count[df_count['重复次数'] != 0].copy()
# 判断错误问题
df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1) print('借方-收款出现的错误')
df_result[['错误原因']]
# 列出两张表中具体的行 # 公司银行存款明细账中的多记/错记 df_gs[df_gs['借方'] == 1.00]
# 银行流水中的漏记 df_yh[(df_yh['收款金额'] == 637146.52) |
(df_yh['收款金额'] == 27023289.88) ]
读取两张 Excel 表的数据
import pandas as pd # 读取公司明细账 df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)
df_gs.head()
# 读取银行流水 df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)
df_yh.head()
数据清洗:修改列名
df_gs_jie = df_gs[['凭证号','借方']] df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})
df_gs_jie.head()
df_yh_shou = df_yh[['收款金额','对方户名']] df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})
df_yh_shou.head()
拼接两张表
# 将两张表的借方-收款拼接 mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)
mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0] # 剔除金额为 0 的行 mergedStuff_jie_shou
根据金额进行统计
df_count = mergedStuff_jie_shou.groupby(by='金额').count()
df_count
# 判断金额出现的次数 df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']
df_count
# 重复次数不为0,就是没有对上 df_result = df_count[df_count['重复次数'] != 0].copy()
df_result
# 判断错误问题
df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1) print('借方-收款出现的错误')
df_result[['错误原因']]
# 多记/错记 df_gs[df_gs['借方'] == 1.00]
# 漏记 df_yh[(df_yh['收款金额'] == 637146.52) |
(df_yh['收款金额'] == 27023289.88) ]
未来,你只要修改好需要读取的表,确定需要比对的列,然后一键运行,结果一瞬间就出来了,而且你之后每个月,每周,甚至每天要比对的时候,你只需要确定好你要比对的表,比对的数据列,就可以快速得到结果,代码复用效率极高。你还可以进一步查看各自表中具体行的数据,方便你具体判断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15