京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:曹鑫
我知道,一说到数字经济,数字化转型,数字化人才,你第一感觉就是:跟我有半毛钱关系。诶,不要着急!
至少 Excel 你天天在用吧?只不过你可能用的最多的就是复制粘贴记录一下数据。你不要怀疑,这高低、左右,都算是数字化技能!因为数字化技能的核心就是数据能力,而且数据能力贯穿着公司业务全流程的每个环节,这也是为什么说,数字经济时代的新生产资料是数据!看看这张数据能力图,分成四个层面:需求层、数据层、分析层、输出层;第一层是需求层,是目标确定的过程,对整个业务进行拆解,为数据工作指明方向;第二层是数据层,包含数据获取、数据清洗、数据整;第三层是分析层,包含描述性统计制图、业务根因分析,这里就涉及到专业的算法;第四层是输出层,面向管理层、决策层、执行层,给出不同的数据报告、业务仪表盘、落地模型等。
今天遇到一个任务是「财务对账」。
对账,可以说是财务最常做的一个工作,也是基础工作之一。就算你们公司的系统已经非常完整了,你还是会遇到两个表要核对差异在哪里的情况。你会怎么做?
当数据量不大的时候,我们最简单的做法,也是最符合第一直觉的做法,把两张表放到一起,一左一右,左边有个268,右边有个268,这就对上了;左边有个20.1,右边没找到20.1,这就是多记了,但是右边有个21,所以也有可能是错记了;左边有个100,右边也有个100,左边还有个100,右边没有100了,那这里可能是多记了。剩下右边还有个8,那这就是左边漏记了,这样就把不同情况都分析出来了。
但如果数据量大了,几百上千行,甚至几万行,这个方法就有点累了,比如我们现在有的两张数据表,一份公司银行存款明细账和一份银行流水,我们需要将公司银行存款明细中的借方与银行流水的收款金额进行核对。别说几百上千行了,光看这个100多行,我就觉得看着累。
如果用 Python 来做,效率就会大大提升。我们先看看Python实现的逻辑,还是之前的例子:我们要看数据有没有重复,就是统计每个数据在两个表分别出现的次数,然后两个表中的个数相减。
知道了逻辑,我们就可以来操作了。先看看效果,就是这30多行代码,作为新人,你别怕,我们先看看有多爽!
import pandas as pd
# 读取公司明细账
df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)
# 读取银行流水
df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)
df_gs_jie = df_gs[['凭证号','借方']] df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})
df_yh_shou = df_yh[['收款金额','对方户名']] df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})
# 将两张表的借方-收款拼接
mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)
mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0]
df_count = mergedStuff_jie_shou.groupby(by='金额').count()
# 判断金额出现的次数
df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']
# 重复次数不为0,就是没有对上
df_result = df_count[df_count['重复次数'] != 0].copy()
# 判断错误问题
df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1) print('借方-收款出现的错误')
df_result[['错误原因']]
# 列出两张表中具体的行 # 公司银行存款明细账中的多记/错记 df_gs[df_gs['借方'] == 1.00]
# 银行流水中的漏记 df_yh[(df_yh['收款金额'] == 637146.52) |
(df_yh['收款金额'] == 27023289.88) ]
读取两张 Excel 表的数据
import pandas as pd # 读取公司明细账 df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)
df_gs.head()
# 读取银行流水 df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)
df_yh.head()
数据清洗:修改列名
df_gs_jie = df_gs[['凭证号','借方']] df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})
df_gs_jie.head()
df_yh_shou = df_yh[['收款金额','对方户名']] df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})
df_yh_shou.head()
拼接两张表
# 将两张表的借方-收款拼接 mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)
mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0] # 剔除金额为 0 的行 mergedStuff_jie_shou
根据金额进行统计
df_count = mergedStuff_jie_shou.groupby(by='金额').count()
df_count
# 判断金额出现的次数 df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']
df_count
# 重复次数不为0,就是没有对上 df_result = df_count[df_count['重复次数'] != 0].copy()
df_result
# 判断错误问题
df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1) print('借方-收款出现的错误')
df_result[['错误原因']]
# 多记/错记 df_gs[df_gs['借方'] == 1.00]
# 漏记 df_yh[(df_yh['收款金额'] == 637146.52) |
(df_yh['收款金额'] == 27023289.88) ]
未来,你只要修改好需要读取的表,确定需要比对的列,然后一键运行,结果一瞬间就出来了,而且你之后每个月,每周,甚至每天要比对的时候,你只需要确定好你要比对的表,比对的数据列,就可以快速得到结果,代码复用效率极高。你还可以进一步查看各自表中具体行的数据,方便你具体判断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12