京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者: tukey
数据科学爱好者知道,在将原始数据输入到机器学习模型之前,需要对其进行大量数据预处理。为此,需要遵循一系列标准来准备数据,具体取决于手头问题的类型(回归或分类)。这个过程的一个主要部分涉及以所有可能的方式评估数据集,以找到有价值的相关性(彼此和目标之间的特征依赖性)并排除噪声(不一致或异常值,即不合格的数据点)。要探索任何数据集,Python 是可用的最强大的数据分析工具之一,此外,还有同样强大的 Python 库可以更好地可视化数据。
因此,为了使数据更有意义或从可用数据中提取更多价值,必须快速解释和分析它。这是Python数据可视化库通过生成图形表示和让数据说话所擅长的地方。通过这种方式,我们可以发现大量数据背后所有可能的趋势和模式。
今天,数据科学和机器学习不仅仅适用于具有强大计算机科学背景的人。相反,欢迎来自不同行业的专业人士对数据有着相同的热情,尽管他们具有一些统计知识,但这种趋势正在增加。这就是为什么来自不同背景和教育背景的人倾向于尝试数据科学和人工智能必须提供的东西。
但是对于刚刚开始使用机器学习的初学者来说,理解数据的选择太多是具有挑战性的,有时甚至是压倒性的。我们都希望我们的数据看起来很漂亮并且可以展示,以便更快地做出决策。总体而言,EDA可能是一个耗时的过程,因为我们仔细查看多个图以找出哪些特征是重要的并对结果产生重大影响。此外,我们寻找方法来处理缺失值和/或异常值、修复数据集中的不平衡以 及许多此类具有挑战性的任务。因此,在选择满足 EDA 需求的最佳库时,这是一个艰难的选择。因此,对于任何开始机器学习之旅的人来说,从自动化 EDA 库开始都是一种很好的学习体验。这些库提供了良好的数据整体视图,并且易于使用。只需几行简单的 Python 代码,这些库就可以节省时间,并使新手能够更加专注于了解如何使用这些不同的图来理解数据。但是,初学者肯定需要对这些库生成的图有基本的了解。
在本文中,我们将为初学者讨论三个有趣的自动EDA Python 库。对于这个初学者友好的教程,我们将使用来自sklearn 的内置“iris”数据集。
我们将首先导入包和库
#loading the datasetfrom sklearn import datasets import pandas as pd print("pandas:",pd. version )
pandas: 1.3.2
data = datasets.load_iris()df = pd.DataFrame(data.data,columns=data.feature_names) df['target'] = pd.Series(data.target)df.head()
如果我们不使用 AutoEDA,这里有一个通常用于 EDA 的命令列表,用于打印有关 DataFrame/数据集的不同信息(不一定按相同的顺序)。
查看我们必须使用多少命令才能在数据中找到洞察力。AutoEDA 库可以通过几行 Python 代码快速完成所有这些以及更多工作。但在我们开始之前,让我们先检查安装的 Python 版本,因为这些库需要 Python >=3.6。要获取版本信息,请在 Colab 中使用以下命令。
# python versionimport sys sys.version
'3.7.6 (default, Jan 8 2020, 19:59:22) n[GCC 7.3.0]'
确认好了符合条件的Python 版本,现在就可以自动进行EDA探索数据分析。
01、Pandas Profiling 3.0.0
import pandas_profiling print("pandas_profiling:",pandas_profiling. version )
pandas_profiling: 3.0.0
从报告中,初学者可以很容易地理解 iris 数据集中有 5 个变量——4 个数字变量,结果变量是分类变量。此外,数据集中有 150 个样本并且没有缺失值。
#Generating PandasProfiling Reportreport = pandas_profiling.ProfileReport(df) report
02、Sweetviz 2.1.3
这也是一个开源 Python 库,仅使用两行代码即可执行深入空格的 EDA。该库为数据集生成的报告以 .html 文件形式提供,可以在任何浏览器中打开。使用 Sweetviz,我们可以检查数据集特征如何与目标值相关联。
可视化测试和训练数据并比较它们。我们可以使用analyze()、compare() 或compare_intra() 来评估数据并生成报告绘制数值和分类变量的相关性。
总结有关缺失值、重复数据条目和频繁条目的信息以及数值分析,即解释统计值与前面的部分类似,我们将首先导入 pandas 来读取和处理数据集。
接下来,我们只需导入 sweetviz 来探索数据。
import sweetviz as sv print("sweetviz :",sv. version )
sweetviz : 2.1.3
这就是经典的的 Sweetviz 报告的样式
#Generating Sweetviz reportreport = sv.analyze(df)report.show_html("iris_EDA_report.html") # specify a name for the report
| | [ 0%] 00:00 -> (? left)Report iris_EDA_report.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop
生成的这些 .html 报告您可以在当前目录下找到,然后可以在浏览器中打开报告。
03、AutoViz 0.0.83
另一个开源 Python EDA 库,只需一行代码即可快速分析任何数据。
# pip install autoviz# pip install wordcloud
from autoviz.AutoViz_Class import AutoViz_ClassAV = AutoViz_Class()
Imported AutoViz_Class version: 0.0.84. Call using: AV = AutoViz_Class()AV.AutoViz(filename, sep=',', depVar='', dfte=None, header=0, verbose=0,lowess=False,chart_format='svg',max_rows_analyzed=150000,max_cols Note: verbose=0 or 1 generates charts and displays them in your local Jupyter notebook.verbose=2 does not show plot but creates them and saves them in AutoViz_Plots directory
由于我们使用的是库中的数据集,因此我们使用 'dfte' 选项而不是 EDA 的文件名。
#Generating AutoViz Report #this is the default command when using a file for the datasetfilename = "" sep = ","dft = AV.AutoViz( filename,sep=",",
depVar="", dfte=None, header=0, verbose=0, lowess=False, chart_format="svg",max_rows_analyzed=150000,max_cols_analyzed=30,)
Dataname input must be a filename with path to that file or a Dataframe Not able to read or load file. Please check your inputs and try again...
#Generating AutoViz Reportfilename = "" # empty string ("") as filename since no file is being used for the datasep = ","dft = AV.AutoViz( '',sep=",",depVar="", dfte=df, header=0,verbose=0, lowess=False, chart_format="svg",max_rows_analyzed=150000,max_cols_analyzed=30,
Shape of your Data Set loaded: (150, 5)############## C L A S S I F Y I N G V A R I A B L E S ####################Classifying variables in data set...Number of Numeric Columns = 4Number of Integer-Categorical Columns = 1 Number of String-Categorical Columns = 0 Number of Factor-Categorical Columns = 0 Number of String-Boolean Columns = 0 Number of Numeric-Boolean Columns = 0 Number of Discrete String Columns = 0 Number of NLP String Columns = 0Number of Date Time Columns = 0 Number of ID Columns = 0Number of Columns to Delete = 05 Predictors classified...This does not include the Target column(s)No variables removed since no ID or low-information variables found in data set Number of All Scatter Plots = 10
depVar="", dfte=None, header=0, verbose=0, lowess=False, chart_format="svg",max_rows_analyzed=150000,max_cols_analyzed=30,)
Dataname input must be a filename with path to that file or a Dataframe Not able to read or load file. Please check your inputs and try again...
#Generating AutoViz Reportfilename = "" # empty string ("") as filename since no file is being used for the datasep = ","dft = AV.AutoViz( '',sep=",",depVar="", dfte=df, header=0,verbose=0, lowess=False, chart_format="svg",max_rows_analyzed=150000,max_cols_analyzed=30,
Shape of your Data Set loaded: (150, 5)############## C L A S S I F Y I N G V A R I A B L E S ####################Classifying variables in data set...Number of Numeric Columns = 4Number of Integer-Categorical Columns = 1 Number of String-Categorical Columns = 0 Number of Factor-Categorical Columns = 0 Number of String-Boolean Columns = 0 Number of Numeric-Boolean Columns = 0 Number of Discrete String Columns = 0 Number of NLP String Columns = 0Number of Date Time Columns = 0 Number of ID Columns = 0Number of Columns to Delete = 05 Predictors classified...This does not include the Target column(s)No variables removed since no ID or low-information variables found in data set Number of All Scatter Plots = 10
Number of Columns to Delete = 05 Predictors classified...This does not include the Target column(s)No variables removed since no ID or low-information variables found in data set Number of All Scatter Plots = 10
Time to run AutoViz (in seconds) = 6.979###################### VISUALIZATION Completed ########################
AutoViz 报告包括有关数据集形状的信息以及所有可能的图表,包括条形图、小提琴图、相关矩阵(热图)、配对图等。所有这些信息与一行代码肯定对任何初学者都有用。
因此,我们使用三个 AutoEDA 库以最少的代码自动化了一个小数据集的数据分析。以上所有代码都可以在原文链接中访问。
结语
从初学者的⻆度来看,Pandas Profiling、Sweetviz 和 AutoViz 似乎是最简单的生成报告以及呈现数据集洞察力的工具。在开始做数据探索时,我经常使用这些库以最少的代码快速发现有趣的数据规律和趋势。希望对你有用!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12