
Python猫注:在今年5月的 Python 语言峰会上,Guido van Rossum 作了一场《Making CPython Faster》的分享(材料在此),宣告他加入了激动人心的“香农计划”,旨在 4 年内提升 Python 性能至 5 倍。近日,Guido 上了一档英文播客节目(时长 30 分钟),谈论了他正在做的与高性能相关的工作,解答了几个问题。播客作者整理了一份内容纪要,本文是对该纪要的翻译。
作者:Software at Scale
译者:豌豆花下猫
Guido:在某种意义上,它对我来说是一个相对舒服的话题,因为这意味着与 Python 的核心打交道,而我对这方面还算熟悉。当我在微软工作时,我曾短暂地关注过 Azure,但我意识到我在谷歌或 Dropbox 时就不喜欢这类工作。然后我关注了机器学习,但这需要花很多时间来做一些与 Python 无关的事情,甚至它与 Python 相关的部分就很少。
Guido:我喜欢他思考问题的方式。大多数其它聚焦于 Python 性能的方法,如 PyPy 和 Cinder,并不适用于所有的使用场景,因为它们不能向后兼容扩展模块。Mark 具有 CPython 开发者的视角和经验,并且有一种可行的方法来维持向后兼容性,这是最难解决的问题。Python 的字节码解释器经常要在小版本之间(例如 3.8→3.9)进行修改,原因有很多,比如新的操作码,所以修改它是一种相对安全的方案。
Guido:当执行一个程序时,你不知道它会在运行了几分之一毫秒后崩溃,还是会持续运行三周时间。因为对于同一份代码,在第一种情况下,它可能触发了一个 bug。如果运行程序需要三周时间,也许提前半小时优化所有待运行的代码是有意义的。
但很明显,特别是在像 Python 这样的动态语言中,我们尽可能多地做,而不要求用户告诉我们他们到底需要怎么做,你只是想尽快开始执行代码。所以,如果有一个小脚本,或者一个大程序,它碰巧执行失败了或者因为某些原因提前退出了,你就不用花费时间去优化全部的代码了。
所以,我们要做的就是保持字节码编译器的简单化,以便能尽快地开始执行代码。如果有某些函数被多次执行,那么我们就称其为 hot 函数。“hot”存在多种定义。在某些情况下,如果一个函数被调用超过一次,或者超过两次,或者超过 10 次,那么它被定义成一个热门函数。而在其它保守的情况下,你可能说“只有被调用 1000 次才算 hot”。
然后,当参数的类型是某些特定类型时,专门化的自适应编译器(PEP-659 Specializing Adaptive Compiler)会尝试用更快的字节码来替换某些字节码。一个简单的假想的例子是 Python 中的加号运算符,它可以令很多对象相加,比如整数、字符串、列表,甚至元组。但是,你不能将整数与字符串相加。
因此,优化的方法就是提供一个单独的“两个整数相加”的字节码,它是一个对用户隐藏的第二层字节码。(“优化”通常被称为加速 quickening,但一般在我们的语境中,我们称之为专门化 specializing)。这个操作码假设它的两个参数都是真正的 Python 整型对象,直接读取这些对象的值,并在机器寄存器中将这些值相加,最后将结果推回堆栈。
两个整数相加的操作仍然需要对参数进行类型检查。因此,它不是完全不受约束的,但这种类型检查相比于完全泛化的面向对象的加号操作,前者在实现上要快得多。
最后,有可能一个函数被整型参数调用了数百万次,然后突然一小段代码用浮点型参数调用它,或者出现更糟的情况。此时,解释器会直接执行原始的字节码。这是一个重要的部分,让你始终能得到完整的 Python 语义。
Python猫注:“香农计划”的最终目标是将解释器的执行过程分层,并对不同层做出定制的优化。
Guido:即时编译的方案有一大堆我们想要避免的情感包袱。比如,我们不清楚到底编译什么,以及什么时候编译。在程序开始执行之前,解释器将源代码编译成字节码,然后,再将字节码转换为专门的字节码。这意味着,所有的事情都在运行时的某个时刻发生,那么,哪个部分是所谓的即时(Just-In-Time)呢?
另外,人们通常认为 JIT 会自动地使所有代码变得更好。不幸的是,你通常无法真正地预测代码的性能。由于有现代的 CPU 和它们神奇的分支预测,我们已经拥有了足够的性能。例如,我们以一种本认为能够明显减少内存访问次数的方式,编写了一份代码。但是,当对它进行基准测试时,我们发现它的运行速度与旧的未优化代码一样快,因为 CPU 在没有我们任何帮助的情况下,计算出了优化的访问模式。我希望我知道现代 CPU 在分支预测和内联缓存方面做了什么,因为这就像是魔法一般。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01