京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:豆豆
来源:Python 技术
在我们的日常生活和工作中有不少场景需要简单处下理图片,很多人都是依赖 PS、美图秀秀等各种图像处理工具,殊不知在你打开软件的一瞬间 Python 就已经将图片处理完了。听起来是不是很神奇,正所谓是 Python 在手,啥也不愁。
Python 届处理图片最强的库是 PIL(Python Image Library),但由于该库只支持 2.x 版本,于是有一批乐于助人的程序员在此基础上做了扩展,出了一个兼容 3.x 的版本也就是 Pillow,因此,我们今天要用的库就是 Pillow。
老规矩,先通过 pip 安装到本地机器。
pip install Pillow
可以通过 Image 类来操控图片,比如打开一张图片并获取其基本信息。
from PIL import Image, ImageFilter, ImageEnhance, ImageDraw, ImageFont
img = Image.open('cat.jpg') print(F'图片大小为 {img.format}, 格式为 {img.size}, 模式为{img.mode}') # 图片大小为 JPEG, 格式为 (3458, 3456), 模式为 RGB
如果给目标图片转换格式,可以通过 save 函数来实现。
img.save("cat.jpg ")
之后你就会在同目录下得到一张扩展名为 png 的图片了。
直接通过 show 函数来显示图片。
img.show()
使用 crop 函数传入一个四元祖坐标来剪裁图片。
point = (1500, 800, 3000, 2300) img_crop = img.crop(point) img_crop.show()
通过 paste 函数传入合并的图像和坐标来实现两张图片的合并,那如果要合并多张图片呢,当然是直接调用多次就好了呀。
img.paste(img_crop, (0, 0), None) img.show(
有时候图像过大,这时候就显示出缩略图的必要了,可以通过 thumbnail 函数传入 size 来实现图片的缩小。
thumb_size = (345, 345) img.thumbnail(thumb_size) img.show()
使用 transpose 函数传入旋转角度来实现图片的翻转。
可以传入的参数有以下几种:
img_rotate = img.transpose(Image.ROTATE_90) img_rotate.show()
当然,我们还可以对图片做一些滤镜处理。
img_gaussianblur = img.filter(ImageFilter.GaussianBlur(30)) img_gaussianblur.show()
img_contour = img.filter(ImageFilter.CONTOUR) img_contour.show()
如果照片亮度不够,还可以对照片进行亮度增强。
color = ImageEnhance.Color(img) img_color = color.enhance(1.5) img_color.show()
当然,如果想对图片进行二次创作,比如添加一些辅助线,文字之类的可以用 ImageDraw 类来完成。
draw = ImageDraw.Draw(img) draw.line((0, 0) + img.size, fill=20, width=3) draw.line((0, img.size[1], img.size[0], 0), fill=200, width=3) img.show()
文字draw = ImageDraw.Draw(img)
font = ImageFont.truetype('AliPuHui-Bold.ttf', 200)
text = 'This is a cat!'
draw.text((450, 450), text, font=font, fill='pink')
img.show()
当然,如果有多行文字的话,直接加入换行符 n 即可。
今天派森酱带大家一起通过使用 Pillow 库对图片进行一些简单的操作,事实上 Pillow 库远不止此,将这些简单的操作进行组合甚至可以自创表情包,期待小伙伴们自行发掘更多更好玩的用法呀~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31