
SPSS分析技术:T检验实例分析
用软件分析之前,得很清楚什么是T检验?用来做什么?回顾T检验理论基础:
抽样分布:t分布;
均值差异性的检验方法:Z检验和T检验综述;
简单总结:要证明两列正态分布的高测度数据(定距数据和高测度定序数据)是否存在差异,可以通过验证它们的均值差异性来达到目的,可以使用T检验和方差分析。T检验适用于单因素双水平,方差分析适用于多因素多水平。
根据数据序列的特点,T检验可以分为四种类型:单样本T检验、配对样本T检验、独立样本等方差T检验和独立样本异方差T检验。在具体应用中,应根据数据序列的特点选择相应的检验方法。如果两列数据之间具有一一对应关系,这种数据称为配对样本,例如同一年级学生的两次考试。如果两列数据各自为一个集合,两个集合内的数据没有对应关系,甚至个数都不相等,这种数据称为独立样本。对于配对样本,可以直接进行T检验;对于独立样本,则需要先检验两列数据的方差是否齐性,如果方差齐性,则使用独立样本等方差检验,否则要使用独立样本异方差检验。
SPSS的T检验分析步骤
检验数据正态性;选择【分析】-【非参数检验】-【旧对话框】-【1样本K-S】命令,检验数据的正态性。
如果是正态数据,可以进行T检验;根据不同数据类型选择不同T检验方式。选择【分析】-【比较平均值】-【单样本T检验】(包括配对样本T检验、独立样本T检验)。
输出结果解读;根据结果输出的检验概率,判断两样本是否存在显著性差异;或判断与某一个具体的常数是否有显著性差异。
案例分析
现有一份《某大学学生成绩》的数据,需要分析两个问题:1、分析变量语文、数学、外语、历史成绩是否存在显著性差异;2、分析男生和女生的数学成绩是否存在显著性差异。
1、分析变量语文、数学、外语、历史成绩是否存在显著性差异;
首先,分析语文、数学、英语和历史成绩的分布形态,结果如下:
从检验结果可知,语文、数学和英语成绩服从正态分布,而历史成绩不符合正态分布。所以对语文、数学和英语成绩进行配对样本T检验,检验它们是否有显著性差异。
第二步,由于语文、数学和英语成绩是根据学生性别一一对应的,所以使用配对样本T检验进行分析。选择菜单【分析】-【比较平均值】-【配对样本T检验】,将语文、数学和英语成绩选为分析变量,得到以下结果:
从检验结果看,语文成绩和数学成绩显著不同,语文成绩与英语成绩也有显著性差异。
2、分析男生和女生的数学成绩是否存在显著性差异。
由于男生的数学成绩与女生的数学成绩属于两个独立样本,所以需要先检查男生与女生分组后的数学成绩的方差是否齐性。
第一步,选择【分析】-【比较平均值】-【独立样本T检验】,将数学成绩选为检验变量,将性别选为分组变量;
第二步,点击【确定】,输出结果;
从结果来看,在Levene方差测试中,显著性为0.581,大于0.05,所以男生和女生的数学成绩是方差齐性的,所以看第一行,T检验的显著性为0.511,大于0.05,表明男生与女生的数学成绩没有显著性差异。如果在Levene方差测试中,显著性结果小于0.05,则需要看第二行的T检验结果。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18