京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果问:2021年哪种类型的人才最有“钱”途?
具有前沿技术背景的数字化人才一定榜上有名。
近些年来,我国人工智能AI,大数据和云计算等技术飞速发展,与此同时也催生了数字经济的蓬勃发展。如今,网络购物、在线外卖、手机支付等数字化消费场景早已进入我们的日常生活,反过来,数字经济的发展也催生大量新的就业机会。
波士顿咨询公司(BCG)发布的《数字经济下就业与人才研究报告》从就业人群、就业领域和就业方式三个方面分析了数字技术可能对就业生态产生的影响和变革,对于数字经济下的就业人群,拥有“特定专业技能(尤其是数字技术相关技能)”对获取中高端就业机会至关重要。
这份报告也预计,2035年中国整体数字经济规模将接近16万亿美元,总就业容量将达到4.15亿,如果不实施有效的人才战略,到时可能出现一个巨大的人才缺口,不只是在数量上,还有技能方面的缺口。
中国国家统计局的数据显示,2015年从事信息传输、软件和信息技术服务相关工作的人数约有350万。但是,其中拥有中高级专业技能数字人才的比例并不高,如果进一步看拥有人工智能、深度分析、虚拟现实和智能制造等前沿技术的数字人才更是少之又少。
数字人才,是指具备ICT(信息通信技术)专业技能和补充技能的人才,他们是大数据、“互联网+”、人工智能、智能制造等多个领域发展的“主力军”。
数字经济所需要的数字化技能分为三类:普通技能、专业技能和补充技能。
专业技能主要指开发产品和服务所需要数字技能,例如编程、网页设计、电子商务、以及最新的大数据分析和云计算等技能。补充技能是指利用特定的数字技能或平台辅助解决工作中的一些问题,例如处理复杂信息、与合作者和客户沟通、提供方案等等。
随着我国数字经济的蓬勃发展,互联网信息技术与传统产业的融合已成为推动我国经济增长的重要新动力,数字人才成为影响我国经济数字化转型进程的重要因素。
从细分行业的分布来看,近一半的数字人才来自于基础产业,其他数字人才主要分布在制造、金融、消费品、医药、企业服务、娱乐、教育等行业,其中制造业、金融业和消费品行业是数字人才从业人数最多的三大行业。
数字人才特征分布
从整体来看,拥有本科学位的数字人才占比最高,其次为硕士学位,拥有博士学位的 人才占比在3%以下,学历分布一定程度上反映出数字人才中研究型、分析型和管理型人才比较稀缺。
数字人才的专业背景主要集中在计算机科学、软件工程、电气和电子工程等技术类学科,工商管理专业也是数字人才的一大学科来源。
从职位等级的分布来看,数字人才结构比较均衡,初级职位的就业者占到数字人才的一半以上,高级专业人员与管理人员的比例也较高,但仍有提高的空间。
数字人才的必备技能中,对数据处理和分析的能力不容小觑。
随着数字化经济在国内不断深化,互联网、金融、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,数据分析已成职场标配技能,数据分析岗也变身为最热门职业之一。
在今天这个数字化环境下,人人都要懂点数据分析成了大趋势,数据分析早已成为职场人士的必备技能。做数据分析,能用数据撬动各项业务增长,你将同时拥有高薪、话语权和不可替代性。
CDA一直致力于数字化人才的转型与赋能,CDA数据分析师认证考试是经国标委发布的数字化人才标准,CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16