京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在领英近期发布的《2021年行业数据分析报告》中提出了三大新兴职场趋势:
“
☆COVID-19影响而迅速兴起的大健康/医疗职位
☆具有“数字化原生”基因的职位
☆传统行业与数字化融合发展的职位
”
在对这三大趋势的拆解中,“数据分析”作为高频词出现在了多个企业高需岗位的人才技能要求里。
不管你是没有多少经验的职场小白,还是已经深谙职场之道的老鸟,在迎接这波人力更迭的大潮时,你都需要接收到这样一个已经非常明确的讯号:数字化时代下,人人都需要有数据分析能力。
但如果你把“有数据分析能力”等同于“工具和方法玩的溜”,那么恭喜,今天这篇文章中的踩坑人说的就是你。
我了解过有不少圈子里的朋友在对数据分析有清晰认知前,就已经花了不菲的价格和大量的精力去专门学习各种工具软件,以证明自己是数字人才,有数据分析能力。
在这里,我想说:不是学会了Excel、SQL、Python、R这些工具,就能做好数据分析!
对于做业务的个人来说,数据分析能力的核心不在方法和工具,而在于数据思维;而对于一个公司来说,最重要的是能利用数据来实现企业在管理、运营、营销等重要环节中的增长。
有不少企业管理者反映,具备业务能力同时又懂数据分析的人才太稀缺了,甚至可以说绝大多数在做“假”数据分析。比如:数据分析只用在复盘环节,每次做总结时,才把数据罗列一下,看似分析了一大串,实际上对业务没有任何帮助;数据解读也只停留在表面,“分析”完数据之后,也没有用上数据思维来解决问题,最后的决策仍是“拍脑袋”。
只是有工具应用能力的你,可能就是一直在做“假”数据分析,或者说你只能算是个工具人。
86%的互联网新人在刚接触高数据技能需求的业务时,因为没有系统的数据思维能力,很容易出现以下3个局面:
1.会用工具“做图表”,但不会“分析”:在统计数据上面花费半天甚至一天的时间,最后却没有得出有效结论;
2.工具的使用无法有效满足业务需求:平时对工具的常规功能操作很熟练,但遇到量大的数据就一头懵,对如何理出“更匹配业务需求的数据”无从下手;
3.缺乏数据思维,更指不上提供策略支持:没有系统学过数据分析,不知道如何拆解数据指标,多维度衡量产品、运营现状。
以上都是大家日常数据分析经常做的“伪数据分析”,看似做了一堆数据分析,但都没有根本发挥数据分析价值,没有为个人或者企业带来收益。
当然,这样的人更不能说是“企业需要的数字人才”了。
相信想要从事数据分析的你,一定已经去招聘网站溜了一圈,稍许了解了现在企业在招聘数据分析相关岗位时都需要具备哪些能力。
认真对比后你会发现,只要是真正要找大数据分析师的企业,他们都会在岗位能力里面提及:需要该岗位从业人员拥有用数据帮企业解决某些问题的能力。
假如是一个纯小白要转行大数据分析,可能不太理解什么叫用数据帮企业解决某些问题,只要是工作过的人都知道,不管你是在哪个公司工作,公司看重的是员工解决问题的能力。
其次考虑的才是员工的工具使用情况,所以工具学习是最基础的,就相当于做平面设计需要会使用最基本的制图工具是一样的道理。
以上这种了解需求的方式是最直接容易的,也是咱们最常用的方式。但这种方式存在的弊端是:很多时候招聘网站上的JD和技能标签是由不太懂业务的HR制作的,这个岗位的核心需求点并没有很好的传达出来。
也就是说你看到的所谓的企业需求,并不是实际的业务需求。在应聘中,当你觉得自己能力完全过关而对HR反馈期待满满时,可能由于你的简历中因为没有企业认可的数据分析能力亮点而连业务筛选这关都过不了。
直播主题:《企业到底需要啥样的数字化人才?看懂行人如何上岸》
直播内容:
1.纵有千古:数字化的前世今生
2.横有八荒:数字化工作的价值聚集:数据科学
3.前途似海:数字化人才的岗位需求
4.未来可期:如何成为企业需要的数字化人才

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31