
在领英近期发布的《2021年行业数据分析报告》中提出了三大新兴职场趋势:
“
☆COVID-19影响而迅速兴起的大健康/医疗职位
☆具有“数字化原生”基因的职位
☆传统行业与数字化融合发展的职位
”
在对这三大趋势的拆解中,“数据分析”作为高频词出现在了多个企业高需岗位的人才技能要求里。
不管你是没有多少经验的职场小白,还是已经深谙职场之道的老鸟,在迎接这波人力更迭的大潮时,你都需要接收到这样一个已经非常明确的讯号:数字化时代下,人人都需要有数据分析能力。
但如果你把“有数据分析能力”等同于“工具和方法玩的溜”,那么恭喜,今天这篇文章中的踩坑人说的就是你。
我了解过有不少圈子里的朋友在对数据分析有清晰认知前,就已经花了不菲的价格和大量的精力去专门学习各种工具软件,以证明自己是数字人才,有数据分析能力。
在这里,我想说:不是学会了Excel、SQL、Python、R这些工具,就能做好数据分析!
对于做业务的个人来说,数据分析能力的核心不在方法和工具,而在于数据思维;而对于一个公司来说,最重要的是能利用数据来实现企业在管理、运营、营销等重要环节中的增长。
有不少企业管理者反映,具备业务能力同时又懂数据分析的人才太稀缺了,甚至可以说绝大多数在做“假”数据分析。比如:数据分析只用在复盘环节,每次做总结时,才把数据罗列一下,看似分析了一大串,实际上对业务没有任何帮助;数据解读也只停留在表面,“分析”完数据之后,也没有用上数据思维来解决问题,最后的决策仍是“拍脑袋”。
只是有工具应用能力的你,可能就是一直在做“假”数据分析,或者说你只能算是个工具人。
86%的互联网新人在刚接触高数据技能需求的业务时,因为没有系统的数据思维能力,很容易出现以下3个局面:
1.会用工具“做图表”,但不会“分析”:在统计数据上面花费半天甚至一天的时间,最后却没有得出有效结论;
2.工具的使用无法有效满足业务需求:平时对工具的常规功能操作很熟练,但遇到量大的数据就一头懵,对如何理出“更匹配业务需求的数据”无从下手;
3.缺乏数据思维,更指不上提供策略支持:没有系统学过数据分析,不知道如何拆解数据指标,多维度衡量产品、运营现状。
以上都是大家日常数据分析经常做的“伪数据分析”,看似做了一堆数据分析,但都没有根本发挥数据分析价值,没有为个人或者企业带来收益。
当然,这样的人更不能说是“企业需要的数字人才”了。
相信想要从事数据分析的你,一定已经去招聘网站溜了一圈,稍许了解了现在企业在招聘数据分析相关岗位时都需要具备哪些能力。
认真对比后你会发现,只要是真正要找大数据分析师的企业,他们都会在岗位能力里面提及:需要该岗位从业人员拥有用数据帮企业解决某些问题的能力。
假如是一个纯小白要转行大数据分析,可能不太理解什么叫用数据帮企业解决某些问题,只要是工作过的人都知道,不管你是在哪个公司工作,公司看重的是员工解决问题的能力。
其次考虑的才是员工的工具使用情况,所以工具学习是最基础的,就相当于做平面设计需要会使用最基本的制图工具是一样的道理。
以上这种了解需求的方式是最直接容易的,也是咱们最常用的方式。但这种方式存在的弊端是:很多时候招聘网站上的JD和技能标签是由不太懂业务的HR制作的,这个岗位的核心需求点并没有很好的传达出来。
也就是说你看到的所谓的企业需求,并不是实际的业务需求。在应聘中,当你觉得自己能力完全过关而对HR反馈期待满满时,可能由于你的简历中因为没有企业认可的数据分析能力亮点而连业务筛选这关都过不了。
直播主题:《企业到底需要啥样的数字化人才?看懂行人如何上岸》
直播内容:
1.纵有千古:数字化的前世今生
2.横有八荒:数字化工作的价值聚集:数据科学
3.前途似海:数字化人才的岗位需求
4.未来可期:如何成为企业需要的数字化人才
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28