
在如今这个信息爆炸时代,数据可视化的重要性不言而喻。
经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。传统的表格看着不仅费劲,还不能在第一时间抓住主要信息,还好世界上还有数据可视化这么个黑科技。
数据可视化旨在借助于图形化手段,清晰有效地传达与沟通信息。
数据可视化能够有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。
数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。
那么都有哪些常用的数据可视化工具呢?
ggplot2 —强大的 R可视化包
R是一款偏向于统计分析的脚本语言软件。基于S语言开发,如果你是R语言忠实fans,我相信你一定不会不知道R里单独的一个绘图包—ggplot2。之所以给ggplot2“强大”的头衔,一方面确实能够轻松应付各个领域的图像绘制,静态的、动态的、个性化特制的;另一方面作者本人就是学统计学的,非常熟悉这个包。
matplotlib —数据科学的达芬奇
如果你偏好使用Python做数据分析,那我相信你对matplotlib不能再熟悉了,matplotlib 是Python语言及其数学扩展包 NumPy的可视化操作界面。
Matplotlib的优点:带有内置代码的默认绘图样式;与Python的深度集成;图形绘制相较Gnuplot更加美观。缺点嘛,高度依赖其他包,如Numpy。只适用于Python:很难在Python以外的语言中使用。
PowerBI —微软忠实用户离不开的交互式标板
Power BI是Microsoft提供的业务分析服务。它提供具有自助式商业智能功能的交互式可视化,用户可以自行创建报告和仪表板,而无需依赖信息技术人员或数据库管理员。PowerBI与excel无缝接入,专业增强版的excel更是不需要安装PowerBI插件,打开excel就可食用了。
Tableau —菜单式操作用户的福音书
Tableau 是基于斯坦福大学突破性技术的软件应用程序。它帮助您生动地分析实际存在的任何结构化数据,以在几分钟内生成美观的图表、坐标图、仪表盘与报告。利用 Tableau 简便的拖放式界面,可以自定义视图、布局、形状、颜色等等,帮助你展现出自己的数据视角。
Tableau的强大之处
Tableau都有哪些强大之处呢?它的其中一个优势就是能让不懂数据的人,也能像看漫画一样看懂数据流,比如像这样:
Tableau作为近两年数据分析行业的“后起之星”,已经因其界面美观、易于操作、完美结合Excel和SQL,连续6年被评为数据分析工具的领导者。
Tableau有多受欢迎
如今在大数据不断发展的趋势下,越来越多的企业需要一个数据可视化的工具协助处理数据信息,希望被处理后的数据能被更多人看懂和理解。
因此在这种趋势之下,Tableau应运而生。虽然Tableau的知名度可能暂时还无法同Python相媲美,但是它将Excel和SQL完美结合,既能分析数据,又能讲数据,因此成为了各大公司求职必备技能之一。
从去年开始美国各大公司如摩根士丹利、亚马等互联网公司、科技公司、投行就已经在招聘的岗位JD中明确表示,候选人需要具备Tableau能力。
而且有数据显示,在数据分析领域对Tableau人才的需求量,已经超过传统的Excel和当红的Python。
对Tableau人才需求量最大的岗位:
学会Tableau=高薪?
Tableau人才的薪资真的是高得让人眼红。例如在美国,熟练掌握Tableau技能的人才平均年薪可以超过11万美金。
*图片来源:网络
而在国内精通Tableau技能,薪资同样高到吓人。在国内Tableau人才中,月薪1W+的人超过50%,有23%的人能拿到月薪2W+,薪资最高的人可以拿到4W+。
此外,在国内除了数据分析、商业分析等岗位对Tableau人才的需求量大以外,越来越多的岗位都需要Tableau技能,如产品经理、运营、项目经理等。从事相关岗位再加上Tableau技能的加持,薪资待遇会更胜一筹。
就拿字节跳动来说,除了数据分析类的工作以外,他们在招聘运营经理,产品经理的时候,岗位JD中都提到了Tableau技能。这些需求Tableau技能的岗位,平均年薪都达到了25W+。
以上说了这么多Tableau的厉害之处,到底应该如何入门学习呢?
这场Tableau入门直播课
墙裂推荐你看看!
教你一小时快速入门
Tableau可视化分析
6月8日周二晚8点
扫描下图二维码
即可进群免费听直播
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10