京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在如今这个信息爆炸时代,数据可视化的重要性不言而喻。
经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。传统的表格看着不仅费劲,还不能在第一时间抓住主要信息,还好世界上还有数据可视化这么个黑科技。
数据可视化旨在借助于图形化手段,清晰有效地传达与沟通信息。
数据可视化能够有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。
数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。
那么都有哪些常用的数据可视化工具呢?
ggplot2 —强大的 R可视化包
R是一款偏向于统计分析的脚本语言软件。基于S语言开发,如果你是R语言忠实fans,我相信你一定不会不知道R里单独的一个绘图包—ggplot2。之所以给ggplot2“强大”的头衔,一方面确实能够轻松应付各个领域的图像绘制,静态的、动态的、个性化特制的;另一方面作者本人就是学统计学的,非常熟悉这个包。
matplotlib —数据科学的达芬奇
如果你偏好使用Python做数据分析,那我相信你对matplotlib不能再熟悉了,matplotlib 是Python语言及其数学扩展包 NumPy的可视化操作界面。
Matplotlib的优点:带有内置代码的默认绘图样式;与Python的深度集成;图形绘制相较Gnuplot更加美观。缺点嘛,高度依赖其他包,如Numpy。只适用于Python:很难在Python以外的语言中使用。
PowerBI —微软忠实用户离不开的交互式标板
Power BI是Microsoft提供的业务分析服务。它提供具有自助式商业智能功能的交互式可视化,用户可以自行创建报告和仪表板,而无需依赖信息技术人员或数据库管理员。PowerBI与excel无缝接入,专业增强版的excel更是不需要安装PowerBI插件,打开excel就可食用了。
Tableau —菜单式操作用户的福音书
Tableau 是基于斯坦福大学突破性技术的软件应用程序。它帮助您生动地分析实际存在的任何结构化数据,以在几分钟内生成美观的图表、坐标图、仪表盘与报告。利用 Tableau 简便的拖放式界面,可以自定义视图、布局、形状、颜色等等,帮助你展现出自己的数据视角。
Tableau的强大之处
Tableau都有哪些强大之处呢?它的其中一个优势就是能让不懂数据的人,也能像看漫画一样看懂数据流,比如像这样:
Tableau作为近两年数据分析行业的“后起之星”,已经因其界面美观、易于操作、完美结合Excel和SQL,连续6年被评为数据分析工具的领导者。
Tableau有多受欢迎
如今在大数据不断发展的趋势下,越来越多的企业需要一个数据可视化的工具协助处理数据信息,希望被处理后的数据能被更多人看懂和理解。
因此在这种趋势之下,Tableau应运而生。虽然Tableau的知名度可能暂时还无法同Python相媲美,但是它将Excel和SQL完美结合,既能分析数据,又能讲数据,因此成为了各大公司求职必备技能之一。
从去年开始美国各大公司如摩根士丹利、亚马等互联网公司、科技公司、投行就已经在招聘的岗位JD中明确表示,候选人需要具备Tableau能力。
而且有数据显示,在数据分析领域对Tableau人才的需求量,已经超过传统的Excel和当红的Python。
对Tableau人才需求量最大的岗位:
学会Tableau=高薪?
Tableau人才的薪资真的是高得让人眼红。例如在美国,熟练掌握Tableau技能的人才平均年薪可以超过11万美金。
*图片来源:网络
而在国内精通Tableau技能,薪资同样高到吓人。在国内Tableau人才中,月薪1W+的人超过50%,有23%的人能拿到月薪2W+,薪资最高的人可以拿到4W+。
此外,在国内除了数据分析、商业分析等岗位对Tableau人才的需求量大以外,越来越多的岗位都需要Tableau技能,如产品经理、运营、项目经理等。从事相关岗位再加上Tableau技能的加持,薪资待遇会更胜一筹。
就拿字节跳动来说,除了数据分析类的工作以外,他们在招聘运营经理,产品经理的时候,岗位JD中都提到了Tableau技能。这些需求Tableau技能的岗位,平均年薪都达到了25W+。
以上说了这么多Tableau的厉害之处,到底应该如何入门学习呢?
这场Tableau入门直播课
墙裂推荐你看看!
教你一小时快速入门
Tableau可视化分析
6月8日周二晚8点
扫描下图二维码
即可进群免费听直播
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12