
SPSS分析技术:多相关样本的非参数检验;问卷调查的受访者态度分析
下面介绍的是多个关联样本非参数检验的方法和应用案例。
多关联样本的非参数检验
如果是多个相关样本的检验,SPSS适用的检验方法有Friedman检验,Kendall系统系数检验和Cochran Q检验等。
多相关样本的Friedman检验
多相关样本的Friedman检验是利用秩实现多个相关总体分布检验的一种方法,其原假设为:样本来自的多个相关总体的分布无显著差异。检验基本原理是以样本为单位,将所有的样本数据混合,然后按照升序排列,计算各个样本的秩总和及平均秩。如果多个相关样本的分布有显著的差异,那么数值普遍偏大的样本的秩总和必然偏大,数值普遍偏小的样本的秩总和也必然偏小,各组的秩之间就会存在显著差异。若各样本平均秩大致相当,那么可以认为各组的总体分布没有显著差异。
Friedman检验统计量的公式为:
该统计量服从卡方分布,若得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受原假设,认为无显著差异。
多相关样本的Kendall协同系数检验
多相关样本的Kendall协同系数检验主要用于分析评判者的判别标准是否一致公平。其原假设为:评判者评判标准一致,没有显著性差异。
协同系数W在n较大时,近似服从卡方分布,表示各行数据之间的相关程度,W的取值范围是0到1。W越接近1,各行数据之间相关性越强,说明评判者的评价标准越一致。SPSS将自动计算W,并给出对应的相伴概率值。若相伴概率值小于或等于显著性水平,则拒绝原假设,认为评判标准不一致;反之则接受原假设,认为评判标准一致。
多配对样本的CochranQ检验
多配对样本的CochranQ检验所能处理的数据是二元数据,即只有两个值(如0或1,好和差)。其零假设为:样本来自的多配对总体分布无显著差异。多配对样本的CochranQ检验的计算公式为:
Q统计量近似服从卡方分布。SPSS自动计算Q统计量及相伴概率值。如果得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受零假设,认为无显著差异。
范例分析
针对当前的大学生普遍存在学习状态不佳的问题,我们通过问卷调查在某校随机采访250名学生,获得有效数据247份。该学习状态问卷分为学习动机、学习信心、学习情绪和学习态度四各部分。在本例中,通过分析了解当前大学生学习状态的这四个构成要素之间的分布是否有显著差异,如有差异,表现在哪些方面。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
选择菜单【分析】-【非参数检验】-【相关样本】,打开【非参数检验:两个或两个以上的相关样本】。将学习动机、学习信心、学习情绪和学习态度这四个字段选入检验字段,检验方法选择系统默认设置【根据数据自动选择检验】。各选项卡其他选项也均选择系统默认设置。单击【运行】,SPSS输出本例非参数检验分析结果。
结果解释
从非参数检验的汇总表可知,检验的渐进显著性概率值P=0.000<0.001,拒绝原假设,表明大学生学习状态的四个构成要素之间的分布差异非常显著。
由Frideman检验的辅助视图可知,学习动机的平均秩为3.16,是最高值;学习态度的平均秩为1.94,是最低值,二者差异显著。
由四项构成要素的成对比较视图可以看出:除了【学习信心-学习情绪】的检验结果为0.169,大于0.05以外,其余各组对比检验的P值均小于0.05,拒绝原假设,这说明大学生学习状态的四个构成要素在分布上相互之间几乎均呈现显著差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26