
SPSS分析技术:多元方差分析
下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析。多元方差分析实质上是单因变量方差分析(包括单因素和多因素方差分析)的发展和推广,适用于自变量同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异。
分析原理
多元方差分析可以看做是多因素方差分析和协方差分析合并后的拓展,能够一次性做两个以上因变量的多因素方差分析和协方差分析。多元方差分析的优点是可以在一次研究中同时检验具有多个水平的多个因素各自对多个因变量的影响以及各因素交互作用后对多个因变量的影响,以及多个因变量作为一个整体模型,自变量对模型的影响。
多元方差分析的条件是:各个自变量的每个水平必须是独立的随机样本,服从正态分布且各总体方差相等。因变量和协变量必须是数值型变量且协变量与因变量相关。自变量可以是数值型分类变量,也可以是字符型分类变量,这是方差分析的基本条件。
案例分析
随着经济的发展,城市生活的节奏也是越来越快,白领的健康状况成为了社会的热门话题。人们晨练和早餐的状况很能够反映人们的生活习惯和健康状况,所以有研究者对不同婚姻状况、性别、年龄阶段的人做了一次较大规模的随机调查,获得880个有效数据。现在用多元方差分析方法分析不同婚姻状况、性别和年龄阶段的人的晨炼状况和早餐状况是否有显著性的差别。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择菜单【分析】-【一般线性模型】-【多变量】,选择“锻炼情况”和“早餐状况”作为因变量;再选择“年龄”、“婚姻状况”和“性别”作为自变量。本题中不涉及协变量,所以不用选择协变量。按照下图所示操作。
2、单击【选项】按钮,打开“多变量:选项”对话框,按下图操作。
3、单击【确定】,输出分析结果。
结果解读
1、协方差矩阵的齐性检验结果;
该检验的零假设是:因变量的协方差矩阵在各组中相等。从表可知,显著性水平P值为0.000,小于0.05,则拒绝零假设,因变量的协方差矩阵在各个组中不相等,表明各个分组的均值不是完全相等的,说明有的变量对模型(两个因变量整体)有显著影响,有的自变量则对模型(两个因变量模型)没有影响。
2、多变量检验结果
因为协方差矩阵的齐性Box’s检验中显著性概率P=0.000,小于0.05,拒绝方差齐性假设。因此要以“Pillai’s 轨迹”、“Hotelling 轨迹”和“Roy最大根”三个指标作为多变量检验的判断依据。从结果来看,年龄和婚姻状况的三种指标的显著性概率均为P=0.000,都小于0.05,达到显著程度,表明年龄和婚姻状况对模型(两个因变量整体)有显著影响,以此类推,在所有因子和因子交互中,年龄、婚姻状况、年龄*性别和年龄*婚姻状况*性别等自变量或自变量交互对模型(两个因变量整体)产生了影响,其它的自变量或自变量交互对模型(两个因变量整体)的影响可以忽略不计。但是想要知道纠结是对模型(两个因变量整体)中的那个自变量产生影响,就要对各因变量分别进行单因素方差分析,也就是下面的主体间效应检验结果。
3、误差方差齐性检验
结果表明,晨练和首选早餐在各组中的方差齐性检验不成立,p=0.000,小于0.05。说明各个自变量和自变量交互对两个因变量的独立影响不完全一样,有的显著有的不显著。
4、主体间效应的检验结果
从结果来看,年龄对晨练的效应显著性为0.000,小于0.001,达到极显著的水平,对于首选早餐的效应显著性为0.036,小于0.05,也是显著的。婚姻状况对晨练的p=0.602,没有达到显著水平,即对因变量晨练没有影响,但是对首选早餐的p=0.000,达到显著水平,即对婚姻状况首选早餐影响重大。在自变量交互里面,只有年龄*性别和年龄*性别*婚姻状况对晨练有显著性影响,其它的没有显著性影响。
综上所述,年龄对于早餐选择和晨练的影响都是显著的,这也符合现在的生活节奏,年轻人能坚持晨练的少于老年人,同时,年轻人对于早餐的选择也多是以方便快捷为主。婚姻状况对晨练没有影响,但是对早餐有影响,一般结婚后,家庭生活稳定,夫妻在一起吃早饭的情况较单身人士多。交互作用的体现比较容易理解,都是在有这两个因素的影响下表现的数据指标显著。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18