京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编译:Mika
【导读】
虽然自动驾驶车可能比手动驾驶更安全、更方便,但也并不能完全避免事故的发生。如果遇到不可避免的事故,自动驾驶车该如何被编程来应对呢?
在本文中帕特里克·林就探讨了领略了自动驾驶车带来的道德问题。
我们来做一个思维实验。
假定某一天,你坐在自动驾驶汽车里,在高速公路上飞驰。
这时,你发现周围全是车。
突然,一个又大又沉的物体从你前方的卡车上掉下来,你的车来不及刹车来避免碰撞。
问题1:因此它必须做一个决定:
A.继续往前,然后撞在这个物体上
B.迅速左转撞向一辆SUV
C.迅速右转撞向一辆摩托车
你的车应该以你的安全为重,而撞向摩托车吗?
还是为了降低对他人的危险,不转弯,即使这样会撞上巨大的物体,并给你带来生命危险牺?
或是选择折中,撞向SUV,因为SUV的安全性能较高?
这种情况下,如果我们掌握着方向盘,不管我们怎么做,都会被理解为瞬间的反应,而不是经过深思熟虑的决定。我们是在惊恐之下做出本能反应,并未深谋远虑或怀揣恶意。
但是如果是程序员要指示这辆车,在未来的特定情况下做出某一决定,这听上去有点像蓄意谋杀。
不过话说回来,自动驾驶汽车预计可以大大减少交通事故和死亡率,因为这中间避免了人类会犯的错误,而且还有很多其他的潜在好处,比如不再拥堵的路面,汽车尾气排放的减少,以及没有了开车的浪费时间和压力。
但是交通意外肯定还是会发生,当它们发生时意外的后果可能在很久以前,就已经被程序员或政策制定者设定好了。
这些决定可不好做,我们倾向于提供笼统的指导决定的原则,比如最小化伤害。但是这很快也会导致道德上模棱两可的决定。
再举个例子,假定前面的情况一致。但此时,在你的左边骑摩托车的人戴着头盔,而右边骑摩托车的人没戴头盔。
问题2:如果必须要选择,你的自动驾驶汽车应该撞哪个?
A.戴着头盔骑摩托车的人
B.没戴头盔骑摩托车的人
如果说撞那个戴着头盔的人 ,因为她的存活率更高,你难道不是在惩罚更负责任的骑摩托车者吗?
反之,如果说撞那个没戴头盔的人,因为不戴头盔是不负责任的行为。但是这样你就彻底违反了,原先的“最小化伤害”的原则,自动驾驶汽车现在成了在主持公路正义了。
道德的问题还要复杂得多,两种情况下其背后的设计都是基于某种目标算法。换句话说,它系统地倾向或者歧视某一类特定目标。
而目标车辆的车主,就得承担这一算法的消极后果。虽然他们自己并没有犯任何错,这些最新的科技还引起了其他的道德困境。
问题3:如果你从以下两辆车中选择:
A.一辆在事故发生时,总是试图拯救尽可能多生命的车
B.一辆不顾一切拯救你的车
你会买哪一辆?
如果汽车开始分析并考虑,车里的乘客以及他们的生存概率情况又会怎样?一个随机的决定会不会还是比以“最小化伤害”为原则事先设计的决定更好?
谁又应该做这些决定呢?
程序员?
公司?
政府?
现实可能跟我们的思维实验有所出入,但是这不重要。
思想实验的目的是,对我们的道德本能进行分离和压力测试,就像物理世界的科学实验一样。
现在识别这些道德的急转弯,能帮助我们更好地掌控科技及其道德问题的未知之路,并让我们充满信心和正义地驶向勇敢、崭新的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27