京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编译:Mika
【导读】
虽然自动驾驶车可能比手动驾驶更安全、更方便,但也并不能完全避免事故的发生。如果遇到不可避免的事故,自动驾驶车该如何被编程来应对呢?
在本文中帕特里克·林就探讨了领略了自动驾驶车带来的道德问题。
我们来做一个思维实验。
假定某一天,你坐在自动驾驶汽车里,在高速公路上飞驰。
这时,你发现周围全是车。
突然,一个又大又沉的物体从你前方的卡车上掉下来,你的车来不及刹车来避免碰撞。
问题1:因此它必须做一个决定:
A.继续往前,然后撞在这个物体上
B.迅速左转撞向一辆SUV
C.迅速右转撞向一辆摩托车
你的车应该以你的安全为重,而撞向摩托车吗?
还是为了降低对他人的危险,不转弯,即使这样会撞上巨大的物体,并给你带来生命危险牺?
或是选择折中,撞向SUV,因为SUV的安全性能较高?
这种情况下,如果我们掌握着方向盘,不管我们怎么做,都会被理解为瞬间的反应,而不是经过深思熟虑的决定。我们是在惊恐之下做出本能反应,并未深谋远虑或怀揣恶意。
但是如果是程序员要指示这辆车,在未来的特定情况下做出某一决定,这听上去有点像蓄意谋杀。
不过话说回来,自动驾驶汽车预计可以大大减少交通事故和死亡率,因为这中间避免了人类会犯的错误,而且还有很多其他的潜在好处,比如不再拥堵的路面,汽车尾气排放的减少,以及没有了开车的浪费时间和压力。
但是交通意外肯定还是会发生,当它们发生时意外的后果可能在很久以前,就已经被程序员或政策制定者设定好了。
这些决定可不好做,我们倾向于提供笼统的指导决定的原则,比如最小化伤害。但是这很快也会导致道德上模棱两可的决定。
再举个例子,假定前面的情况一致。但此时,在你的左边骑摩托车的人戴着头盔,而右边骑摩托车的人没戴头盔。
问题2:如果必须要选择,你的自动驾驶汽车应该撞哪个?
A.戴着头盔骑摩托车的人
B.没戴头盔骑摩托车的人
如果说撞那个戴着头盔的人 ,因为她的存活率更高,你难道不是在惩罚更负责任的骑摩托车者吗?
反之,如果说撞那个没戴头盔的人,因为不戴头盔是不负责任的行为。但是这样你就彻底违反了,原先的“最小化伤害”的原则,自动驾驶汽车现在成了在主持公路正义了。
道德的问题还要复杂得多,两种情况下其背后的设计都是基于某种目标算法。换句话说,它系统地倾向或者歧视某一类特定目标。
而目标车辆的车主,就得承担这一算法的消极后果。虽然他们自己并没有犯任何错,这些最新的科技还引起了其他的道德困境。
问题3:如果你从以下两辆车中选择:
A.一辆在事故发生时,总是试图拯救尽可能多生命的车
B.一辆不顾一切拯救你的车
你会买哪一辆?
如果汽车开始分析并考虑,车里的乘客以及他们的生存概率情况又会怎样?一个随机的决定会不会还是比以“最小化伤害”为原则事先设计的决定更好?
谁又应该做这些决定呢?
程序员?
公司?
政府?
现实可能跟我们的思维实验有所出入,但是这不重要。
思想实验的目的是,对我们的道德本能进行分离和压力测试,就像物理世界的科学实验一样。
现在识别这些道德的急转弯,能帮助我们更好地掌控科技及其道德问题的未知之路,并让我们充满信心和正义地驶向勇敢、崭新的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12