
嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL II的模拟试题时间了,今天给大家带来的是模拟试题(一)中的1-5题。
不过,在出题前,要公布上一期LEVEL I中136-140题的答案,大家一起来看!
136、B
137、D
138、B
139、B
140、B
你答对了吗?
1.整数规划,作为一种特殊的线性规划可以适用于多种运筹学和管理科学的场景,下列选项中,不适用的是?
A.农产品企业在种植面积受限情况下,分配多种蔬菜种植面积以使收益最大化
B.服装企业在满足供需的情况下,为实现利润最大化决定某些城市建设物流中心
C.房地产企业下属三个分公司各自独立,分别提出互斥型投资方案,选择对公司最有利的投资方案
D.汽车企业在原材料受限的情况下,决定能使利润最大化的不同类型的汽车数量生产方
2.单纯形法是求解线性规划问题最常用、最有效的算法之一,关于单纯形法的说法正确的是
A.在线性规划问题中,只要存在相应的解,则一定可以在可行域的顶点中找到。
B.单纯形法的核心是根据一定的规则,一步步寻找可行域中的最优解。
C.对偶单纯形法是求解对偶问题的一种方法。
D.单纯形法计算精度高,并且是一种很经济的算法
3.依照决策变量取整要求的不同,整数规划的划分类型不包括以下哪种?
A.全整数规划
B.混合整数规划
C.0-1整数规划
D.非纯整数规划
4.在解线性规划问题时,可能出现的情况不包括()
A.可行域为空集,原问题有可行解
B.可行域非空但无界,无最优解
C.可行域非空但无界,有最优解
D.最优解有无穷多个
5.线性规划的标准型要求等式约束方程右端的常数都是?
A.非零
B.非负
C.非正
D.任何实数
认真答题哦,我们将在下一期公布正确答案,敬请期待。
报名方式
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
Level Ⅰ:随报随考。
Level Ⅱ:随报随考。
Level Ⅲ:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。
Level Ⅰ+Ⅱ:中国内地30+省市,70+城市,250+考场。考生可选择就近考场预约考试。
Level Ⅲ:中国内地30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11