
来源:麦叔编程
来源:麦叔编程
作者:麦叔
我还是先一本正经的声明一下,上班时间应该认真工作,这几个工具仅供娱乐。
老板从远处走来,似乎向你的位置走了过来,是来催工作的!
可你一直在摸鱼,工作根本没开始。怎么办?
1.打开个这个网站。
2.在右边选择适合你的操作系统:
image-20210319075809630
3.点击进入系统安装界面
给浏览器全屏:Windows下全屏快捷键是:F11。
老板走过来以后,你就可以完美甩锅给电脑:这个电脑,已经更新半天了,气死我了!!
反转:老板看了一会后,在你的键盘上轻轻又按了一下F11(退出全屏的快捷键),说:这个我早就用过了,还忽悠我!马上干货,干不完不准回家!
cc
memdump
cargo
这个也支持在线版本,可以先去体验一下:
但是为了应对知道F11快捷键的老板,最好的方式是下载桌面版本。
这个黑客帝国里的场景,为了下载敌人的机密数据,爬虫是爬不进去了,必须黑进对方的系统!
课时没有访问权限:
于是你在键盘上胡乱敲了几下:
系统竟然神奇的可以访问了:
要掌握这项高精尖的技能,你只需要打开一个网址:
用HyperTyper,你可以在键盘上胡乱瞎敲,就可以有序打出高深的代码,可谓装B神奇。
Hacker Typer
HackerTyper支持一定的界面定制:
更重要的是,结束后,它还提供了让你成为真正黑客的一些资源,这才是重点:
上面的Hyckertyper支持界面定制,但是比较单一。geektyper就更高级一些:
它可以模拟不同的操作系统,命令行,编辑器等等:
你都读到这里了,一看就是个很认真的人,我也是!
本文开始就说了,分享这些工具只是为了好玩,上班时间还是应该认真工作!说这话,我是认真的。
其实认真工作又有成就的状态才是最快乐的,浑水摸鱼是很无聊的!
下面我来分享几个快速进入工作状态的技巧:
(1)5分钟原则
有时候我们进入不了工作状态,不是因为因为懒,而是因为工作有点摸不着头绪,不知道怎么下手。
这时候可以先想一个自己5分钟内就可以完成的任务,然后马上去做。
比如,要写一个工作总结,不知道怎么写。想想看,有什么事情是5分钟之内可以完成的?
有了这样明确,又很容易完成的任务,你就更可能马上启动工作。
(2)2分钟原则:
有时候事情是很明确的,也不难,就是不想做!
这时候用2分钟原则,强迫自己马上开始做,就做2分钟!2分钟后不想做,可以停下来!
但事实上人是有惯性的,你一旦启动了,你会发现工作也挺好玩的,就继续干下去了。
我还用另外一个10秒钟原则,每天吃完饭,我就马上拿起一个盘子就走向洗碗池,这个过程只要5秒钟,一旦启动了这个5秒钟,我肯定会刷锅刷碗擦桌子,全部搞定。
但如果错过了最初的几分钟,可能就会拖到第二天,因为理由很充分啊:我要出去散步啊,我要看书啊,我要开会啊。
不好,好像暴露在家里的地位。这段其实是我朋友的故事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08