京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如今,用APP打车是司空见惯的事情,不过你有没有发觉自己已成“大数据杀熟”的重点目标了!
复旦大学管理学院孙副教授和其团队进行了一项数据收集和分析研究,得出了一人令人震惊的结果。
研究团队遍布了国内5座不同的城市,分别进行了800多趟打车的操作,搜集到了滴滴、曹操、首汽、T3、 美团、高德和扬招等7个渠道的数据。
通过分析这些数据得出了一份“打车报告”,结果表明这些打车平台存在明显的“大数据杀熟”行为。
据更详细数据显示,苹果手机用户更容易被舒适的车辆,如:专车、优享等的司机接单,比例是非苹果手机用户的3倍。
不仅如此,苹果手机用户比非苹果手机用户享受到的打车优惠更少,苹果手机用户平均只能获2.07元优惠,而非苹果用户平均可获4.12元优惠。
你是苹果手机用户吗?你今天被“大数据杀熟”了吗?为了让大家能避开这个坑,我们先来了解下何为“大数据杀熟”。
“大数据杀熟”究竟是啥
2018年天猫、京东等平台被指责有“大数据杀熟”嫌疑,即:同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。
随着大数据分析技术蓬勃发展,经营者运用已有的大量数据,如:消费偏好、频率、习惯、收入等,分析客户购买力、对商品或服务需求的程度……
依据分析结果,将同一商品或服务以不同价格卖给不同的消费者,从而获得更大的利益。
互联网“大数据杀熟”起源
互联网“大数据杀熟”鼻祖是亚马逊,2000年,亚马逊启动了著名的差别定价实验,将部分DVD碟片对新顾客报价22.74美元,而对感兴趣的老顾客报价26.24美元。
这种销售方式产生了极佳的效果,但后来被老顾客发现,最终以亚马逊赔钱并道歉告终。
“大数据杀熟”常见形式
▷ 根据用户使用设备不同而差别定价,如:苹果与安卓用户定价不同;
▷ 根据用户消费场所不同而差别定价,如:给距离商场远的用户定价更高;
▷ 根据用户消费频率不同而差别定价,如:给消费频率高的用户定价更高。
怎样避开“大数据杀熟”
▶ 网购时,偶尔换新账号,查看价格变化情况;
▶ 货比三家,提防商户隐藏信息,多了解商品;
▶ 切勿轻易被商户锁定、被套牢。
“大数据杀熟”后话
——给卖家的话
大数据分析是为给消费者提供更好的服务,差异化定价应遵守底线,保证用户的知情权,以防危及品牌的名誉,造成忠实用户的流失。
——给买家的话
没有人能避开大数据,根据消费习惯、喜好等,在线平台会给每位消费者贴上千个标签。不想被大数据“套牢”,就要跟上大数据时代的步伐,注意培养自己的数据分析思维。
大数据分析是什么?
大数据分析,为提取有用信息和形成结论,而对数据加以详细研究和概括总结的过程。简而言之,就是将数据(包括文本、音乐、文字、数字等)转化为知识、智慧的方法。
拥有数据分析思维的人,想不发光发亮都很难。因此,随着大数据时代到来,以这种思维为基础形成了一个朝阳产业,倍受社会各界人士的青睐。
现今,各大企业对数据分析能力过硬的人才,需求量也越来越大,供不应求的市场导向,让这个新风口行业的从业者薪资普遍偏高。
不过,大数据技术的出现是为更好地服务于大众,而非欺骗忠实顾客,谋取高额利益的手段。建议消费者也能多了解大数据,培养大数据思维,从而明白如何维护自己的权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12